车载充电器是一种通过汽车电瓶供电的充电设备,主要用于为便携式或手持式电子设备(如手机、平板电脑、GPS等)提供充电服务。它通常插入汽车的点烟器插座,将汽车电瓶的12V(轿车)或24V(卡车)直流电转换为适合电子设备使用的5V USB电压或其他电压。
在这个电子设备不离身的时代,充电器作为设备的 “能量补给站”,其重要性不言而喻。随着科技的飞速发展,氮化镓充电器逐渐走进大众视野,它与我们常见的普通充电器相比,有着诸多显著的区别。这些区别不仅体现在技术层面,更直接影响着我们的使用体验。接下来,就让我们深入探究氮化镓充电器和普通充电器的不同之处。
在电动汽车(EV)性能不断提升、续航里程持续增加的大趋势下,车载充电器(OBC)作为关键部件,面临着前所未有的挑战。更高的电池电压要求更快的充电速率,同时,设计上又需要实现更小体积、更轻重量以及更高的热效率。应对这些挑战,需从元件层面重新思考功率转换的实现方式。ROHM 半导体公司最新研发的 HSDIP20 封装的 4 合 1 和 6 合 1 SiC 塑封模块,为这一难题提供了全新的解决方案。该系列模块专为 OBC 中的功率因数校正(PFC)和 LLC 转换器电路以及其他高功率应用而设计,有望显著提升功率密度和热管理水平,这两个参数对于现代电动汽车系统至关重要。
碳化硅(SiC)功率开关器件正成为工业电池领域一种广受欢迎的选择,因其能够实现更快的开关速度和更优异的低损耗工作,从而在不妥协性能的前提下提高功率密度。此外,SiC还支持 IGBT技术无法实现的新型功率因数拓扑结构。本文将介绍优化拓扑结构与元器件选型。
这些通过AEC-Q101认证的器件可为汽车应用节省占板空间并提供高稳定性
Holtek针对PD充电锂电池产品,推出Arm® Cortex®-M0+ MCU HT32F61052,符合USB-PD 3.2规范并兼容Dual Role Port (DRP)双向角色,内建VCONN提供Type-C E-maker电源,允许最大48V/5A(240W) 功率,并支持3~6串的锂电池保护,适合应用于PD应急启动电源、PD便携型充气泵、PD工具电池包等。
PD协议指的是USB-PD协议,全称为USB Power Delivery,是USB-IF组织提出的一种快充协议,目前USB-PD的通用性较高和兼容性较广,像iPhone、MacBook等设备都可以使用这种快充协议来达到快充的目的。
工业设备正在向电动化转型,亟需稳健、可靠、高效的电池充电方案。从电动工具到重型机械,其充电器必须能够适应恶劣的环境和不同的电源(120-480 Vac),并在设计上优先考虑小型化、轻量化和自然对流散热。本文旨在为工程师提供设计此类关键系统的指导,重点讨论拓扑选择和器件选型,尤其是具有颠覆意义的碳化硅(SiC) MOSFET。
正在寻找一种聪明的方法来为你的12V电池充电而不会过度充电?本项目向您展示了如何使用广泛使用的NE555定时器IC和一些基本组件构建具有自动切断功能的DIY 12V涓流充电器。
现代消费者对于便捷性和高效性的追求,使得他们在使用电动汽车充电器时,更倾向于选择操作简便、交互体验好的设备。与传统的依赖信号的手机应用程序相比,触摸式 HMI 在公共充电器上的应用,为用户提供了更加直观、快捷的操作方式。就如同在加油站或停车计时器上广泛应用的显示屏一样,触摸显示屏在电动汽车充电器上的出现,让用户能够轻松地完成一系列操作,如选择充电类型(订阅会员或访客)、选择充电电缆类型、完成支付、显示充电状态、选择价格方案、启动 / 停止充电,甚至观看广告等。这种便捷的操作体验,大大提升了用户对电动汽车充电的满意度。
【2025年3月26日, 德国慕尼黑讯】继推出业界首款PFC和混合反激(HFB)组合IC后,全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)又推出E型混合反激控制器系列。专为高性能应用设计的全新XDP™混合反激数字控制器系列,采用先进的不对称半桥(AHB)拓扑结构,将反激转换器的简易性和谐振转换器的效率相结合,从而实现高功率密度设计。因此,该控制器系列适用于各类AC/DC应用,包括二级市场和原厂充电器、适配器、电动工具、电动自行车充电器、工业开关电源、电视机电源、LED驱动器等。
这个项目将一个旧的移动充电器改造成一个智能防盗报警器。当有人触摸门把手时,电路检测到它,并立即触发一个响亮的蜂鸣器,吓跑入侵者。这种成本效益高且环保的解决方案将电子废物转化为实用的安全系统,确保家庭和办公室的安全。
性能强大的芯片组采用紧凑、高效散热的封装,可实现高达98%的效率
LTC3110 双向降压-升压型 DC/DC 稳压器在存在总线电压(例如 3.3V)时对超级电容器进行充电和平衡,并在总线发生故障时将超级电容器放电到负载中。即使超级电容器电压高于或低于标称总线电压,LTC3110 也能维持总线的标称电平。通过这种方式支持负载,可以在电源中断期间进行数据备份和保留,这对于各种工业和汽车应用都很重要。
几乎每一个基于太阳能的系统都有一个与之相关的电池,它必须从太阳能中充电,然后从电池中获得的能量将用于驱动负载。为锂电池充电有多种选择,我们之前也构建了一个简单的锂电池充电电路。但要用太阳能电池板给电池充电,最受欢迎的选择是MPPT或最大功率点跟踪器拓扑,因为它比PWM控制的充电器等其他方法提供了更好的精度。
在本教程中,我们将通过结合TP4056锂离子电池充电器IC和FP6291升压转换器IC来构建一个锂电池充电器和升压模块,用于单个锂电池。这样的电池模块在使用锂电池为电子项目供电时非常有用。该模块可以安全地为锂电池充电,并将其输出电压提高到稳压的5V,可以为我们的大多数开发板供电,如Arduino, NodeMcu等。我们的模块的充电电流设置为1A,输出电流也设置为5V时的1A,但是,如果需要和电池支持,它也可以很容易地修改为提供高达2.5A。
在当今快速发展的电子设备和新能源汽车市场中,锂离子电池(Li-ion)以其高能量密度、长寿命、无记忆效应和低自放电率等优点,成为了主流的能量存储解决方案。而锂离子电池充电器作为连接电源与电池的关键设备,其性能直接关系到电池的使用寿命、安全性和用户体验。
在现代科技的迅猛发展中,电池充电器电路的设计与创新从未停歇。传统的充电器电路大多遵循固定的模式和原理,然而,一些创新者和工程师们却致力于探索更为高效、智能和独特的充电器电路设计。这些“非主流”的电池充电器电路不仅提高了充电效率,还增强了电池的使用寿命和安全性。
在现代电子设备中,电池续航能力是消费者极为关注的一个性能指标。为了确保产品在运输和存储过程中不会因电池自放电而耗尽电量,许多充电器和设备都设计了“运输节电模式”(Shipping Mode或Ship Mode)。这一模式通过降低设备的静态电流消耗,有效延长电池寿命,确保消费者在购买后能立即使用产品。
随着电动车市场的迅速扩大,电瓶车作为绿色出行的重要工具,其充电器的设计与性能日益受到关注。一款低成本、高可靠性的电瓶车充电器不仅能够提升用户体验,还能有效保障电池的安全与寿命。本文将从电瓶车充电器的电路原理、关键元件选型、保护机制以及实际应用等方面,深入探讨低成本、高可靠性电瓶车充电器的设计与实现。