当前位置:首页 > 厂商动态 > 安森美(onsemi)
[导读]碳化硅(SiC)功率开关器件正成为工业电池领域一种广受欢迎的选择,因其能够实现更快的开关速度和更优异的低损耗工作,从而在不妥协性能的前提下提高功率密度。此外,SiC还支持 IGBT技术无法实现的新型功率因数拓扑结构。本文将介绍优化拓扑结构与元器件选型。

碳化硅(SiC)功率开关器件正成为工业电池领域一种广受欢迎的选择,因其能够实现更快的开关速度和更优异的低损耗工作,从而在不妥协性能的前提下提高功率密度。此外,SiC还支持 IGBT技术无法实现的新型功率因数拓扑结构。本文将介绍优化拓扑结构与元器件选型。

优化拓扑结构与元器件选型

电池供电工具和设备的便利性在很大程度上依赖于快速高效的充电。 为此,电池充电解决方案的设计人员必须根据所需的功率水平和工作电压,精心选择最佳拓扑结构。 此外,他们还必须选择能够精准满足应用性能要求的元器件。

安森美提供覆盖低压、中压及高压的全系列功率分立器件,包括适用于上述关键拓扑的硅基二极管、MOSFET和IGBT。依托先进的裸芯与封装技术,安森美功率器件以卓越品质和稳健性能满足各类设计需求。

此外,我们基于SiC的开关器件具备更快的开关速度和超低损耗特性,可显著提升功率密度。 安森美 650 V M3S EliteSiC MOSFET(图 1)提供业界领先的开关性能,大幅提升 PFC 和 LLC 级的系统效率。

该器件针对 40 kHz 至 400 kHz 的高频应用进行了优化。EliteSiC M3S 技术相比其前代产品,栅极电荷减少了 50%,EOSS降低了 44%,输出电容中的存储电荷(QOSS)减少了 44%。这种出色的EOSS参数在PFC级应用于硬开关拓扑时,可显著提升轻载条件下的系统效率。同时,较低的 QOSS还简化了 LLC 级软开关拓扑的谐振腔电感设计。 此外,M3S EliteSiC MOSFET在PFC和DC-DC模块高频运行时保持低温工作状态。

图 1. 650 V M3S EliteSiC MOSFET 是 PFC 和 LLC 级的理想选择

图 2. 安森美 650 V M3S EliteSiC MOSFET 产品系列

我们还提供基于 PLCES 的系统级 Elite Power 仿真工具,助力工程师根据不同的拓扑结构和功率水平优化元器件选型。该仿真工具不仅能协助选择适用于各种拓扑和功率水平的EliteSiC MOSFET。

还可深度洞察采用我们如下EliteSiC 系列产品的电路运行状况,Field Stop 7 (FS7) IGBT、PowerTrench®T10 MOSFET 和 Inteligent Power Modules (IPM),包括特定产品的制造工艺极限情况。我们的仿真模型不仅基于数据手册中的典型参数,还提供了基于制造环境中物理相关性的极限工况仿真能力。这使用户能够了解器件在实验室工艺边界条件下的性能,从标称情况到最坏情况均可进行仿真。

此外,PLECS 模型自助生成工具(SSPMG)允许用户输入具有代表性的寄生元件,并生成自己的定制 PLECS 模型进行仿真。我们通过创新的SPICE模型实现了高精度的原型设计。

我们的物理和可扩展 SPICE 模型为仿真电力电子电路中功率器件的行为提供了一种准确而高效的方法,从而缩短了产品开发周期。我们最近对SSPMG进行了升级,并集成了Würth Elektronik的无源元件数据库,从而使用户能够为复杂的电力电子应用创建更加精确和详细的 PLECS 模型。 这一直观的基于网页的平台有助于在设计初期阶段及早发现并解决性能瓶颈问题。

图 3. 安森美Elite Power仿真工具和 PLECS 模型自助生成工具

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭