当前位置:首页 > > 充电吧
[导读]浅谈压缩感知(二十三):压缩感知重构算法之压缩采样匹配追踪(CoSaMP)主要内容:CoSaMP的算法流程CoSaMP的MATLAB实现一维信号的实验与结果测量数M与重构成功概率关系的实验与结果一、C

浅谈压缩感知(二十三):压缩感知重构算法之压缩采样匹配追踪(CoSaMP)

主要内容:

CoSaMP的算法流程CoSaMP的MATLAB实现一维信号的实验与结果测量数M与重构成功概率关系的实验与结果一、CoSaMP的算法流程

压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法。CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了原子的选择标准之外,它有一点不同于ROMP:ROMP每次迭代已经选择的原子会一直保留,而CoSaMP每次迭代选择的原子在下次迭代中可能会被抛弃。

二、CS_CoSaMP的MATLAB实现(CS_CoSaMP.m)

function [ theta ] = CS_CoSaMP( y,A,K )
%   CS_CoSaOMP
%   Detailed explanation goes here
%   y = Phi * x
%   x = Psi * theta
%    y = Phi*Psi * theta
%   令 A = Phi*Psi, 则y=A*theta
%   K is the sparsity level
%   现在已知y和A,求theta
%   Reference:Needell D,Tropp J A.CoSaMP:Iterative signal recovery from
%   incomplete and inaccurate samples[J].Applied and Computation Harmonic 
%   Analysis,2009,26:301-321.
    [m,n] = size(y);
    if m<n
        y = y'; %y should be a column vector
    end
    [M,N] = size(A); %传感矩阵A为M*N矩阵
    theta = zeros(N,1); %用来存储恢复的theta(列向量)
    pos_num = []; %用来迭代过程中存储A被选择的列序号
    res = y; %初始化残差(residual)为y
    for kk=1:K %最多迭代K次
        %(1) Identification
        product = A'*res; %传感矩阵A各列与残差的内积
        [val,pos]=sort(abs(product),'descend');
        Js = pos(1:2*K); %选出内积值最大的2K列
        %(2) Support Merger
        Is = union(pos_num,Js); %Pos_theta与Js并集
        %(3) Estimation
        %At的行数要大于列数,此为最小二乘的基础(列线性无关)
        if length(Is)<=M
            At = A(:,Is); %将A的这几列组成矩阵At
        else %At的列数大于行数,列必为线性相关的,At'*At将不可逆
            if kk == 1
                theta_ls = 0;
            end
            break; %跳出for循环
        end
        %y=At*theta,以下求theta的最小二乘解(Least Square)
        theta_ls = (At'*At)^(-1)*At'*y; %最小二乘解
        %(4) Pruning
        [val,pos]=sort(abs(theta_ls),'descend');
        %(5) Sample Update
        pos_num = Is(pos(1:K));
        theta_ls = theta_ls(pos(1:K));
        %At(:,pos(1:K))*theta_ls是y在At(:,pos(1:K))列空间上的正交投影
        res = y - At(:,pos(1:K))*theta_ls; %更新残差 
        if norm(res)<1e-6 %Repeat the steps until r=0
            break; %跳出for循环
        end
    end
    theta(pos_num)=theta_ls; %恢复出的theta
end

三、一维信号的实验与结果

%压缩感知重构算法测试
clear all;close all;clc;
M = 64; %观测值个数
N = 256; %信号x的长度
K = 12; %信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的
Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N); %测量矩阵为高斯矩阵
A = Phi * Psi; %传感矩阵
y = Phi * x; %得到观测向量y

%% 恢复重构信号x
tic
theta = CS_CoSaMP( y,A,K );
x_r = Psi * theta; % x=Psi * theta
toc

%% 绘图
figure;
plot(x_r,'k.-'); %绘出x的恢复信号
hold on;
plot(x,'r'); %绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('n恢复残差:');
norm(x_r-x) %恢复残差

四、测量数M与重构成功概率关系的实验与结果

clear all;close all;clc;

%% 参数配置初始化
CNT = 1000; %对于每组(K,M,N),重复迭代次数
N = 256; %信号x的长度
Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
K_set = [4,12,20,28,36]; %信号x的稀疏度集合
Percentage = zeros(length(K_set),N); %存储恢复成功概率

%% 主循环,遍历每组(K,M,N)
tic
for kk = 1:length(K_set)
    K = K_set(kk); %本次稀疏度
    M_set = 2*K:5:N; %M没必要全部遍历,每隔5测试一个就可以了
    PercentageK = zeros(1,length(M_set)); %存储此稀疏度K下不同M的恢复成功概率
    for mm = 1:length(M_set)
       M = M_set(mm); %本次观测值个数
       fprintf('K=%d,M=%dn',K,M);
       P = 0;
       for cnt = 1:CNT %每个观测值个数均运行CNT次
            Index_K = randperm(N);
            x = zeros(N,1);
            x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的                
            Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
            A = Phi * Psi; %传感矩阵
            y = Phi * x; %得到观测向量y
            theta = CS_CoSaMP(y,A,K); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P = P + 1;
            end
       end
       PercentageK(mm) = P/CNT*100; %计算恢复概率
    end
    Percentage(kk,1:length(M_set)) = PercentageK;
end
toc
save CoSaMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来

%% 绘图
S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
figure;
for kk = 1:length(K_set)
    K = K_set(kk);
    M_set = 2*K:5:N;
    L_Mset = length(M_set);
    plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号
    hold on;
end
hold off;
xlim([0 256]);
legend('K=4','K=12','K=20','K=28','K=36');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title('Percentage of input signals recovered correctly(N=256)(Gaussian)');


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭