当前位置:首页 > > 充电吧
[导读]阶段二:押注消费硬件的社交时代硬件+社交,成为2014-2018年facebook“自我拯救”的两大核心关键词。2014年,facebook以20亿美元的价格收购虚拟现实头戴设备制造商Oculus,开

阶段二:押注消费硬件的社交时代

硬件+社交,成为2014-2018年facebook“自我拯救”的两大核心关键词。

2014年,facebook以20亿美元的价格收购虚拟现实头戴设备制造商Oculus,开启了“软件向下整合”制造业的里程。

2016年,成立了Building 8部门和设备阵容强大的“Area 404”硬件实验室,让自家多个部门的硬件工程师聚集在一起放飞自我,以共同催化facebook的硬件计划。

不过,最早与大众见面的,居然是2017年跟风发布的一款带有硕大触控屏的智能音箱“Portal”,当时被群嘲为“帮笔记本屏幕存货清库存”,随后又遭遇了收集用户隐私的指控。

在隐私形式更加严峻的2018年,facebook又执着地发布了内置摄像头和麦克风的硬件产品Portal及Portal Plus,用户可以在上面通过社交账号进行视频聊天。从市场的反馈来看,显然是不及格。

阶段三:伸向AI的硬件触角

消费硬件虽然步履维艰,但忙着“带货”的同时,facebook也没忘记自己的技术使命,开启了向AI大潮的坚定转型,将AI研究应用于facebook的既有产品上。

不过,扎克伯克宣布进入智能领域的时候,其实已经晚了。当时,谷歌已经将深度学习应用于多个业务线,微软更是雄踞近千名科学家和工程师,亚马逊暗自研究AI已有4年之久,中国的百度更是刚刚挖走了谷歌的深度学习领头人Andrew Ng。

“赶了个晚集”的facebook,除了在现有业务上加速上马AI 之外(成立了FAIR和AML),自然也选择了两条腿走路,跟硬件死磕到底。

2015年,facebook开源了自己的人工智能硬件服务器“Big Sur”,该服务器包含了8个图像处理单元,可以运行最新的人工智能算法,供程序猿们免费使用。此后还不间断地在GitHub这样的开源服务上发表代码,狂刷AI人设。

随着今年这一通“硬件开源大礼包”的骚操作,facebook的“硬件拯救”计划终于不再是一件强行穿上的“皇帝新衣”,而是为自己重新定位了一个新坐标:智能基础设施服务商。

03.硬件开源2.0,对于facebook有何意义

那么,这张2.0版本的“硬件名片”,对facebook来说究竟意味着什么?或许我们可以从三个角度来找到答案:

1.自身AI技术的“软着陆”。

当前环境下,深度神经网络的技术门槛、应用场景和稀缺的算力资源,都在制约着开发者的手脚。其中支撑AI基础设施的就是开放硬件技术。

而对于facebook来说,其机器学习系统每天要处理超过200万亿次的预测和50亿次的翻译,积累了领先性的技术优势和应用场景,将这些产业资源(包括数据、工具、框架、硬件等)整合,并通过开源的形式共享出来,能够帮助整个AI产业链造就更有持续生命力的开发环境,降低开发成本,既是facebook作为巨头的责任,也是其技术优势在产业链的“软着陆”。

2. 提升智能基础架构的产业竞争力

谷歌、亚马逊、苹果等已经在AI基础架构领域火力全开,围绕AI芯片、专用处理器展开鏖战,facebook想要“后来居上”提高竞争力,开源自然迫在眉睫。

一是有更多的企业使用facebook统一规范的硬件,可以增大采购量,帮助facebook降低成本。正如facebookAI领域的创建者 Yann LeCun所说,“越多的人使用这项技术,它的成本就会变得越低。”另一方面,开源则可以吸引外部人才参与项目协作,并改进相关技术。

减少自身科研经费压力的同时,还有可能从第三方社区中招募一些人才。这些都是AI这场“圈地战争”的关键赛点。

3. 埋藏着金矿的生态集群

AI的未来也必然需要一个集合了全球优秀开发者的庞大集群,开源恰恰就是争夺生态资源的最好办法。以安卓为例,由于开源,谷歌创建了强大的开发者社区,才有了手机市场的大半壁江山。

通过为开发者们注入基础的技术、硬件和生态能力,后续的产业融合和广告效应才是科技巨头们所期望看到的。为了在“后发”的AI基础设施领域迅速缩小与谷歌、IBM等的差距,facebook通过开源壮大自身生态系统,自然也就迫在眉睫。

综合这三方面来看,facebook的“硬件2.0计划”,既是水到渠成,也是因势利导的明智之举。对于众多AI开发者和企业来说,也确实是个福音。新的硬件解决方案和更强大的算力资源,很大程度上降低了机器学习训练的工作量,也将给AI的商业化步伐带来新的想象空间。

不过,需要正视的是,升级版硬件开源,或许能让facebook在AI领域赢得声誉和民心,却未必能保证实现扎克伯格“硬件求生”的战略雄心。

首先,硬件毕竟是通用的。一大波基础硬件厂商和初创企业之所以能风起云涌(截至2018年至少有45家),正是因为硬件解决方案的技术壁垒极容易被攻破。而谷歌和亚马逊在AI和机器学习领域的算法和软件技术,其优势可能会很快超越硬件创新所带来的提升。

在这样的高压环境下,facebook过度押注于产业生态的故事,而忽略了商业化本身的严峻现实,资本市场恐怕会率先“用脚投票”,谈及帮助开发者或许还为时尚早。

但无论如此,积极转型也预示着新的变化的开始。至于这场“硬件开源”的升级版绝地求生,到底是恢弘故事的开头,还是狗尾续貂的序章,时间终会证明一切。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国上海– 2025年6月17日——智能电源与智能感知技术的领先企业安森美(onsemi,纳斯达克代码:ON)近日参加了第九届北京国际听力学大会,展示了前沿的听力解决方案,巩固了公司在智能化、个性化听力健康领域的领先地位...

关键字: 人工智能 处理器 神经网络 助听器

随着边缘计算与AI技术的深度融合,边缘AI模型在智能安防、自动驾驶、工业物联网等领域得到广泛应用。然而,模型作为AI系统的核心资产,面临严重的逆向工程威胁:攻击者可通过反编译、模型窃取等技术手段,获取模型结构与参数,进而...

关键字: 边缘AI 反逆向工程 神经网络

本节详细介绍了官方演示评估过程和效果演示手势检测和RTSP人脸识别。

关键字: 手势识别 神经网络 BW21-CBV-Kit

针对目前开关柜温度监测存在的问题 , 在研究了负荷电流 、环境温度 、温度变化时间等因素对开关柜温升的影响 后 ,运用有限元温度场仿真技术预测了开关柜内部的温度分布情况 。将温度场仿真数据作为机器学习的训练样本 、温升试...

关键字: 开关柜 有限元仿真 神经网络 温升预测 主动预警 温度监测策略 智慧变电站

人工智能(AI)是为了模仿人类的认知能力而设计的,它的许多应用都是受我们的五感--视觉、听觉、触觉、味觉和嗅觉的启发。在艾省, 想象力 与计算机视觉相对应,使机器能够解释图像和视频。 听到 由自然语言处理(NLP)和语音...

关键字: 人工智能 神经网络

神经网络与人工智能transformer主要差异

关键字: 神经网络 人工智能

北京2024年12月11日 /美通社/ -- 今年的诺贝尔奖,将AI推到了科学舞台的中央,标志着AI在科学研究中的重要地位得到了认可,也体现了学科交叉赋能将成为AI时代的科研发展趋势。用AI赋能学科研究,创新科研新范式。...

关键字: AI 模型 神经网络 编码

在人工智能(AI)技术日新月异的今天,神经网络作为其核心驱动力,正逐步渗透到各个行业与领域。然而,传统的神经网络模型往往受限于计算资源和功耗,难以在边缘设备上实现高效运行。现场可编程门阵列(FPGA)作为一种高性能、低功...

关键字: FPGA 神经网络 边缘智能

在日益复杂的工业和汽车环境中,状态监测对于确保安全可靠的运行变得越来越重要。通过数据分析可以检测运行异常和潜在的设备缺陷,从而在发生故障之前及时进行维修。它还可以最大限度地减少维护频率并避免不必要的成本。

关键字: 神经网络 振动分析
关闭