当前位置:首页 > 电源 > 功率器件
[导读]本技术文章系列的前三期重点介绍了使用低功率放大器进行设计的好处以及如何最大限度地提高其效率。不幸的是,低功率放大器也需要权衡取舍。在第四部分中,我将考虑低功率放大器设计中最常见的挑战之一——不稳定性——以及如何用一种简单的技术解决这个问题。 大多数运算放大器 (op amp) 应用在负反馈环路中使用放大器,其中输出信号 (OUT) 连接到反相输入 (IN–)。负反馈对于确保输出电压进行调整以使输入保持在相同的电压电平是必要的。这种调整可防止运算放大器的开环增益(通常为 1 V/MV 或 120 dB)将放大器的输出轨控到电源电压之一。因此,负反馈有助于保持放大器的输出稳定且可预测。

本技术文章系列的前三期重点介绍了使用低功率放大器进行设计的好处以及如何最大限度地提高其效率。不幸的是,低功率放大器也需要权衡取舍。在第四部分中,我将考虑低功率放大器设计中最常见的挑战之一——不稳定性——以及如何用一种简单的技术解决这个问题。

大多数运算放大器 (op amp) 应用在负反馈环路中使用放大器,其中输出信号 (OUT) 连接到反相输入 (IN–)。负反馈对于确保输出电压进行调整以使输入保持在相同的电压电平是必要的。这种调整可防止运算放大器的开环增益(通常为 1 V/MV 或 120 dB)将放大器的输出轨控到电源电压之一。因此,负反馈有助于保持放大器的输出稳定且可预测。

不幸的是,简单地将 OUT 反馈到 IN- 不足以确保稳定的负反馈。如果输出信号在返回 IN– 的途中被延迟,则输入引脚上的电压将不匹配。然后,输出电压将过度校正并超过其最终值,以尝试解决问题。这种效应的结果是较长的输出稳定时间。如果延迟变得足够长,则反馈信号将具有足够的相位延迟,使其看起来像正反馈而不是负反馈。结果将是不需要的振荡,如图 1 所示。

 

1:意外的运算放大器不稳定

反馈网络中的大电阻-电容 (RC) 时间常数是造成这种延迟的原因。运算放大器的开环输出阻抗 (R O ) 和放大器的负载电容 (C Load ) 的组合,或大反馈电阻(R F R G)与运算放大器的输入电容 (C CMC Diff ),形成 RC 时间常数。图 2 显示了运算放大器电路中这些组件的示例。请注意,有些元件在运算放大器内部,而另一些在外部。RC 时间常数越大,延迟越长。

 

2:运算放大器不稳定的常见来源

使用低功率运算放大器的电路特别容易受到稳定性问题的影响,因为低功率运算放大器本身具有较大的开环输出阻抗。对于表 1 中的低功耗运算放大器,随着静态电流 (I Q ) 和增益带宽积 (GBW) 的降低,放大器的开环输出阻抗会增加,从而使低功耗器件即使在容性负载较轻的情况下也不稳定. 此外,具有低功耗运算放大器的电路可能会使用大反馈电阻来节省功耗,从而进一步恶化稳定性。

典型规格

TLV9062

TLV9002

TLV9042

TLV8802

电源电压 (V S )

1.8V-5.5V

1.8V-5.5V

1.2V-5.5V

1.7V-5.5V

带宽 (GBW)

10兆赫

1兆赫

350kHz

6kHz

25°C 时每通道的典型 Q

538µA

60µA

10µA

320 毫安

10 kHz 时的开环输出阻抗

100Ω

1.1kΩ

7.5kΩ

190kΩ

1:比较低功耗运算放大器

稳定技术

最常见的稳定方法是隔离电阻 (R iso ) 方法,该方法用于具有容性负载的放大器。这种稳定性技术只需要在反馈环路之后的运算放大器输出端增加一个电阻,而且这个电阻通常不需要太精确。尽管隔离电阻器可能很大并且会导致由电压降引起的输出误差,但大多数低功率电路具有低电流输出。因此,隔离电阻的主要缺点对于低功率运算放大器而言通常不是一个重大问题。

那么 R iso方法是如何工作的呢?输出端的容性负载与放大器的开环输出阻抗相互作用,产生一个 RC 时间常数。该 RC 时间常数在反馈路径中引入了显着延迟。过大的延迟可以有效地将负反馈回路转变为正反馈回路。放置适当大小的 R iso组件(如图 3 所示)可以抵消 RC 时间常数的影响并减少反馈延迟。结果是一个更稳定的电路。TI Precision Labs运算放大器视频系列对这种效应提供了更严格的数学解释。

 

 

3:改进的运算放大器稳定性

尽管 R iso方法是一种有效的技术,但它并不适用于所有应用。例如,大反馈电阻与放大器输入电容的相互作用有时会导致不稳定。这种相互作用在具有增益的低功率放大器电路中更为常见;将其视为反馈网络中的另一个延迟。为了抵消这种影响,我们可以选择使用大小与放大器输入电容(由共模输入电容 [CCM] 和差模输入之和表示)相似反馈电容 (C Comp )数据表中的电容 [C Diff ]),从而抵消了由输入电容和反馈电阻形成的时间常数。

 

 

4:带和不带 C Comp 20mV 阶跃输入

作为实际考虑,我建议在低功耗运算放大器电路附近的电路板上包括 R iso C Comp的印刷电路板 (PCB) 封装以及相应的测试点。这样做可以通过添加组件快速修复稳定性问题,并且比重新设计 PCB 更容易且成本更低。不需要时,我们可以用 0-Ω 电阻器替换 R iso并使 C Comp不填充。

结论

低功耗运算放大器是功率受限应用中的重要组件。不幸的是,这些设备带来了稳定性挑战。使用上述技术,这些困难可以得到缓解,我们可以享受稳健的低功耗运算放大器电路设计所带来的节能效果。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子科技领域,集成电路芯片扮演着至关重要的角色。运算放大器作为集成电路的一种,其性能与应用广泛影响着各类电子电路的运行效率与稳定性。LM324N与LM324AD,作为两款备受瞩目的运算放大器,各自具有独特的特点和优势。...

关键字: lm324n lm324AD 运算放大器

运算放大器,简称运放,是一种具有极高电压增益、内部负反馈机制和广泛用途的集成电子电路。自其诞生以来,运算放大器在模拟信号处理、测量、控制、滤波等多个领域发挥了至关重要的作用,它的存在使得许多复杂的电子系统设计变得更为简洁...

关键字: 运算放大器 模拟信号

目前,随着现代大型燃煤火力发电机组的装机容量越来越大,现代大型燃煤火力发电机组每天消耗的燃煤量也逐步增加,而称重式给煤机作为燃煤输送、称重及调节自动化的重要辅助设备,其稳定可靠性、称重计量准确性对机组的安全经济运行及燃煤...

关键字: 给煤机 称重 稳定性

输入失调电流(Input Offset Current, Io)是实际运算放大器(Operational Amplifier, Op-Amp)的一个固有特性,它是指在同一型号的运算放大器内部,两个输入端的偏置电流不完全相...

关键字: 失调电流 运算放大器

在电子工程领域,电压跟随器(Voltage Follower)是一种极其重要的运算放大器电路配置,它以其独特的特性,在信号处理、系统接口设计以及电气隔离等方面扮演着关键角色。电压跟随器也称为缓冲放大器、单位增益放大器或隔...

关键字: 电压跟随器 运算放大器

新竹,台湾,2024年3月13日 -工业5.0注重智慧化、感测能力和高度自动化,代表着智慧工业领域的新一波革命,在这个背景下,工业自动化和物联网应用在多个领域对高精准、小型化传感器的需求不断增加。NuMicro M091...

关键字: 运算放大器 模拟数字转换器 传感器

高增益和内部频率补偿。LM358的内部包括两个独立的运算放大器,每个放大器都具有高增益和内部频率补偿,适合于单电源或双电源工作模式。

关键字: lm358芯片 运算放大器 高增益

静态电流仅160nA,有助于消费电子和工业设备应用更加省电

关键字: 运算放大器 静态电流 消费电子

典型应用包括工业、服务器和电信基础设施电源,以及汽车信号调理和电源转换电路

关键字: 运算放大器 服务器 电源转换电路

RC正弦波振荡器是一种常用的模拟振荡器,它利用电阻(R)和电容(C)元件以及运算放大器(Op-Amp)来产生正弦波信号。这种振荡器结构简单、易于实现,并且输出信号的频率和幅度可以通过改变电阻和电容的值来调整。本文将详细介...

关键字: RC正弦波振荡器 运算放大器 正弦波信号
关闭