当前位置:首页 > 电源 > 功率器件
[导读]在这篇文章中,我们将研究 MOSFET 用于电池保护。 每年,越来越多的电子设备由包含锂离子 (Li ion) 电池的电池供电。高功率密度、低自放电率和易于充电使其成为几乎所有便携式电子产品的首选电池类型——如今,从口袋里的手机到每天数以百万计开车上班的电动汽车,应有尽有由锂离子电池供电。尽管它们具有许多优点,但这些电池也带来了一定的风险和设计挑战,如果不成功缓解这些风险和设计挑战,可能会导致灾难性的后果。我认为没有人会很快忘记 2016 年爆炸性的 Galaxy S7 设备平板电脑和随后的召回。

在这篇文章中,我们将研究 MOSFET 用于电池保护

每年,越来越多的电子设备由包含锂离子 (Li ion) 电池的电池供电。高功率密度、低自放电率和易于充电使其成为几乎所有便携式电子产品的首选电池类型——如今,从口袋里的手机到每天数以百万计开车上班的电动汽车,应有尽有由锂离子电池供电。尽管它们具有许多优点,但这些电池也带来了一定的风险和设计挑战,如果不成功缓解这些风险和设计挑战,可能会导致灾难性的后果。我认为没有人会很快忘记 2016 年爆炸性的 Galaxy S7 设备平板电脑和随后的召回。

降低此类破坏性事件风险的一种常见方法是将 MOSFET 放置在充电和放电路径中,当电池电压被认为是外部电路时,它可以切断电池与末端电路中其他电子设备之间的电气连接。指定的安全范围,或 IC 在充电或放电期间检测到过电流浪涌(参见图 1)。

 

1:简化的单节锂离子电池保护电路

因为这不是一个快速开关应用,所以我们实际上只需要考虑最坏情况下的传导损耗,这使得 MOSFET 的选择标准类似于负载开关的选择标准。但是有一些独特的考虑值得单独讨论,以突出那些特定于电池保护的警告。

因为电池保护 MOSFET 既可以完全增强并持续传导电流,也可以完全关闭以断开电池电压与其他电子设备的连接,因此在考虑用于此应用的 FET 时,我们几乎可以忽略开关参数。相反,就像根据电流处理能力选择负载开关 FET 时一样,电阻和封装类型是两个最重要的考虑因素。考虑到这一点,将电池保护分解为不同类型的终端设备所需的三层电流并分析用于每层的 FET 类型是有意义的。

第一层是使用一到两个电池运行的低功耗个人电子产品,例如手机、平板电脑、智能手表或个人健康追踪器。这些设备在充电和放电时消耗的电流量可高达几安培或低至几百毫安。众所周知,个人电子产品设计师在每一代产品中都在不断努力减小产品的尺寸(和重量),因此他们选择 FET 进行电池保护的标准是尽可能小,同时仍能够处理最大充电和放电电流。有时这意味着像 FemtoFET™ N 沟道 MOSFET 这样的芯片级器件是一个不错的选择。

由于 FET 在这些应用中经常背靠背放置,从而阻塞了充电和放电路径(如上图 1 所示),有时将两个器件集成到一个采用公共漏极配置的单一封装中是最节省空间的解决方案(图 2 )。TI 拥有大量集成背靠背器件,提供芯片级封装和小型四方扁平无引线 (QFN) SON3x3 塑料封装。

 

2:集成到单个封装中的通用漏极配置 FET 示意图

第二类电池供电设备是多节手持式无绳电动工具,如电钻、修剪器、小锯和家用电器,如机器人真空吸尘器。这些设备仍然对尺寸敏感,但以相当高的电流为电池充电,通常高于 10A。因此,设计人员通常使用电阻最低的 D2PAK、TO-220 或某些情况下的 QFN 封装。必要时可以并行使用多个设备,特别是对于电锯和绿篱修剪机等大型工具,但将 FET 的数量保持在最低限度以保持较小的外形尺寸仍然很重要。与电机控制 FET 一样,给定封装中电阻最低的器件通常更可取。否则你会选择一个更小的包。

第三层最高功率的电池充电应用是电动汽车,如电动自行车、电动踏板车,甚至电动汽车和公共汽车。在这一点上,电流和功率水平可能很大(数百安培,几千瓦的功率),并且确实没有办法将多个 FET 并联用于充电和放电路径。我见过设计人员在大型电路板上并联数十个 FET,通常使用 D2PAK、散热器安装的 TO-220 或其他热增强封装器件(图 3)。除了设计较小的电动自行车外,尺寸通常不是问题,电流处理能力是游戏的名称。再一次,这意味着只选择电阻最低的 FET。所需的 FET 数量是电阻、最高环境温度以及作为孔的电路板和系统的热阻抗的函数。

 

3:数十个 D2PAK FET 并联在大型 PCB 上,用于电动汽车电池的充电和放电

关于在电动汽车中使用电池保护 FET 的最后一点说明——确定最终应用是否需要 Q101 级 FET 至关重要。Q101 是来自汽车电子委员会的汽车认证等级(集成电路的 Q100 分立等效物),它对质量和可靠性的要求比商业级设备的强制性要求要严格得多。我们的设备是否需要 Q-101 认证取决于最终应用和许多其他因素,从客户标准到车辆运营所在国家/地区的法律。

电动自行车和电动滑板车通常不太可能需要 Q-101,但情况并非总是如此。最好在围绕无法放入最终终端设备的 FET 构建设计之前找出这一点。TI 在其产品组合中不提供任何符合汽车标准的 FET,因此如果有此要求,我们 FET 解决方案将不得不来自其他地方。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭