当前位置:首页 > 电源 > 功率器件
[导读]本文分析了高性能肖特基势垒二极管和 D 型 HEMT 在基于 p-GaN HEMT 的 200-V GaN-on-SOI 智能功率 IC 平台上的成功协同集成。这些组件的添加使芯片设计具有扩展的功能和更高的性能,使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的DC/DC 转换器和 PoL 转换器 铺平了道路。

本文分析了高性能肖特基势垒二极管 D 型 HEMT 在基于 p-GaN HEMT 的 200-V GaN-on-SOI 智能功率 IC 平台上的成功协同集成。这些组件的添加使芯片设计具有扩展的功能和更高的性能,使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的DC/DC 转换器 PoL 转换器 铺平了道路。

GaN:电力电子领域的硅解决方案

几十年来,基于硅的功率晶体管(如 MOSFET)构成了功率转换系统的主干,可将交流电 (AC) 转换为直流电 (DC),反之亦然,或者将直流电从低压转换为高压,反之亦然。在寻求可以提高开关速度的替代品时,氮化镓迅速成为领先的候选材料之一。GaN/AlGaN 材料体系表现出更高的电子迁移率和更高的击穿临界电场。结合高电子迁移率晶体管 (HEMT) 架构,与同类硅解决方案相比,它使器件和 IC 具有更高的击穿强度、更快的开关速度、更低的电导损耗和更小的占位面积。 

今天,大多数 GaN 电源系统由多个芯片组成。基于 GaN 的器件在组装到印刷电路板上之前作为分立元件组装。这种方法的缺点是存在影响器件性能的寄生电感。 

以司机为例。在单独的芯片上带有驱动器的分立晶体管受到驱动器输出级和晶体管输入之间以及半桥开关节点之间的寄生电感的影响。GaN HEMT 具有非常高的开关速度,当寄生电感未被抑制时,这会导致振铃——信号的不希望的振荡。减少寄生效应并利用 GaN 卓越的开关速度的最佳方法是将驱动器和 HEMT 集成在同一芯片上。 

同时,它减少了半桥中两个晶体管之间的死区时间控制,其中一个晶体管必须在另一个晶体管打开时关闭。在这期间,电源和地之间存在短路,或死区时间。在片上集成所有组件将解决振铃问题、减少死区时间并最终提高转换器的电源效率。 

D-Mode HEMT 的协同集成

Imec 已经在绝缘体上硅 (SOI) 基板上单片集成构建块(例如驱动器、半桥和控制/保护电路)取得了巨大进展。现在,研究人员已经成功地在产品组合中添加了两个广受欢迎的组件:耗尽型 (D-mode) HEMT 和肖特基二极管。 

200 毫米 GaN-on-SOI 衬底上制造的高压组件的工艺横截面:
a)E 型 p-GaN HEMT;(b) D 型 MIS HEMT;(c) 肖特基势垒二极管。所有器件都包括基于
前端和互连金属层并由介电层隔开的金属场板。

提高 GaN 功率 IC 的全部性能的主要障碍之一是找到合适的解决方案,以解决 GaN 中缺乏具有可接受性能的 p 沟道器件的问题。CMOS 技术使用互补且更对称的 p 型和 n 型 FET 对,基于两种 FET 的空穴和电子迁移率。然而,在 GaN 中,空穴的迁移率比电子的迁移率差大约 60 倍;在硅中,这只有 2 倍。这意味着以空穴为主要载流子的 p 沟道器件将比 n 沟道对应器件大 60 倍,而且效率极低。一种广泛使用的替代方法是用电阻器代替 P-MOS。电阻晶体管逻辑 (RTL) 已用于 GaN IC,但在开关时间和功耗之间表现出权衡。 

Imec 通过在其 SOI 上的功能增强模式 (E-mode) HEMT 平台上共同集成 D 模式 HEMTS,提高了 GaN IC 的性能。增强和耗尽模式是指在零源电压下的开启(D 模式)或关闭(E 模式)状态,导致晶体管中有电流流动(或不流动)。Imec 预计从 RTL 到直接耦合 FET 逻辑的步骤将提高速度并降低电路的功耗。 

具有低泄漏电流的肖特基二极管

肖特基势垒二极管的集成进一步提高了 GaN 功率 IC 的功率效率。与硅二极管相比,它们可以在相同的导通电阻下承受更高的电压或在相同的击穿电压下承受更低的导通电阻。 

制造肖特基势垒二极管的挑战是获得低导通电压,同时获得低泄漏水平。不幸的是,当您瞄准较低的导通电压时,您最终会遇到一个小的屏障来阻止泄漏电流,而肖特基二极管因泄漏电流高而臭名昭著。与传统 GaN 肖特基势垒相比,Imec 专有的栅极边缘端接肖特基势垒二极管架构 (GET-SBD) 可实现约 0.8 V 的低开启电压,同时将漏电流降低几个数量级二极管。 

快速开关和高电压

GaN 是大功率应用的首选材料,因为引起晶体管击穿的临界电压(击穿电压)比硅高 10 倍。但由于其卓越的开关速度,GaN 在低功率应用中仍然比硅具有优势。 

imec 创建的基于 GaN 的 IC 为更小、更高效的 DC/DC 转换器和负载点 (PoL) 转换器开辟了道路。例如,智能手机、平板电脑或笔记本电脑包含在不同电压下工作的芯片,需要 AC/DC 转换器为电池充电,设备内部需要 PoL 转换器以产生不同的电压。这些组件不仅包括开关,还包括变压器、电容器和电感器。晶体管的开关速度越快,这些组件就会变得越小,最终在相同功率下产生更紧凑和低成本的系统。 

快速电池充电器构成了当今 GaN 的最大市场,其次是用于服务器、汽车行业和可再生能源的电源。预计使用 GaN 的电源在系统级更可靠。它们的外形尺寸和重量更小,从而减少了材料清单,从而降低了成本。 

正在研究的垂直设备

Imec 将专注于提高现有平台的性能并进行进一步的可靠性测试。该公司目前提供用于原型设计的 200-V 和 650-V 平台,不久之后将推出 100V。对于具有集成组件的 GaN IC,1,200-V 大功率平台可能不会产生显着改进。电压越高,组件变得越慢。因此,可能没有必要在芯片上集成驱动程序;模拟将证实这一点。 

Imec 还在寻找分立 1,200-V 器件的替代品,为电动汽车等最高电压电源应用启用 GaN 技术。具有横向拓扑的晶体管是当今占主导地位的 GaN 器件架构。这些器件的三个端子(源极、栅极和漏极)位于同一平面的表面,因此电场是横向的,跨越 GaN 缓冲层和部分后端(金属化、氧化物)。在垂直器件中,源极和栅极位于表面,而漏极位于外延叠层的底部。在这种情况下,电场流过整个堆栈。决定器件击穿电压的是源漏分离,较大的分离可以保护通道不被击穿。然而,横向放置的源极和漏极之间的距离越大,器件越大。由于用于 1,200 V 设备的芯片会变得太大,因此通常建议横向架构最高达到 650 V。相反,对于垂直器件,使用更高的电压归结为创建更厚的外延堆叠,因为源极和漏极位于堆叠的不同端。芯片的表面积不会增加。 



声明:本文仅代表作者本人观点,不代表本站观点,如有问题请联系站方处理。
换一批
延伸阅读

最近可能遇到了“GaN”,它正在一些关键的功率转换应用中取代硅 (Si)。在本博客系列“如何使用 GaN 进行设计”中,我将了解氮化镓 (GaN) 与 Si 的不同之处,以及使用 GaN 创建电源设计时的关键考虑因素。

关键字: GaN 功率器件

在 2021 年国际电子器件会议 (IEEE IEDM 2021) 上,世界领先的纳米电子和数字技术研究和创新中心 imec 展示了高-性能肖特基势垒二极管和耗尽型 HEMT 在基于 p-GaN HEMT 的 200 V...

关键字: 肖特基二极管 GaN

我最近与您分享了TI 全新 Piccolo™ F28004x 微控制器 (MCU) 系列的生产公告,该系列针对电源控制应用进行了优化。 Piccolo F28004x 用于高性能电源控制的主要特性包括:

关键字: 电源控制 GaN

Navitas 的集成 GaN 解决方案 (GaNFast)通过提供五倍的功率密度、40% 的节能和 20% 的生产成本,使充电系统的运行速度比传统硅组件快 100 倍。例如,您将能够更快地为智能手机充电。

关键字: GaN 快速充电

氮化镓 (GaN) 场效应晶体管 (FET) 的采用正在迅速增加,因为它能够提高效率并缩小电源尺寸。但在投资该技术之前,我们可能仍会问自己 GaN 是否可靠。令我震惊的是,没有人问硅是否可靠。毕竟还是有新的硅产品一直在问...

关键字: GaN 可靠性

新 IC 工艺的开发和商业化,尤其是有些激进的工艺,在我看来一直是设备技术的神奇和神秘的终结。是的,有聪明的电路、架构和拓扑结构,但是构思一个新的过程,然后让它成为现实和可制造的——以及现实所需要的一切——似乎需要对物理...

关键字: GaN 功率器件

增强型氮化镓 (GaN) 晶体管已商用五年多。市售的 GaN FET 设计为比最先进的硅基功率 MOSFET 具有更高的性能和更低的成本。这一成就标志着 60 年来第一次在性能和成本方面任何技术都可以与硅相媲美,并标志着...

关键字: GaN GaN应用

在过去的几十年中,碳化硅和氮化镓技术的进步一直以发展、行业接受度不断提高和有望实现数十亿美元收入为特征。第一个商用 SiC 器件于 2001 年以德国英飞凌的肖特基二极管的形式问世。随之而来的是快速发展,到 2026 年...

关键字: SiC GaN

分立氮化镓 (GaN) FET 的兴起增加了对更用户友好界面的需求,同时也提高了效率。半桥 GaN 功率级(例如LMG5200)具有用于高低 GaN FET 的单独驱动输入。两个输入(图 1 中的引脚 4 和 5)使我们...

关键字: GaN 半桥驱动

今天,小编将在这篇文章中为大家带来功率表的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 功率表 功率 热电偶法

功率器件

11940 篇文章

关注

发布文章

编辑精选

技术子站

关闭