当前位置:首页 > 电源 > 功率器件
[导读]本文分析了高性能肖特基势垒二极管和 D 型 HEMT 在基于 p-GaN HEMT 的 200-V GaN-on-SOI 智能功率 IC 平台上的成功协同集成。这些组件的添加使芯片设计具有扩展的功能和更高的性能,使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的DC/DC 转换器和 PoL 转换器 铺平了道路。

本文分析了高性能肖特基势垒二极管 D 型 HEMT 在基于 p-GaN HEMT 的 200-V GaN-on-SOI 智能功率 IC 平台上的成功协同集成。这些组件的添加使芯片设计具有扩展的功能和更高的性能,使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的DC/DC 转换器 PoL 转换器 铺平了道路。

GaN:电力电子领域的硅解决方案

几十年来,基于硅的功率晶体管(如 MOSFET)构成了功率转换系统的主干,可将交流电 (AC) 转换为直流电 (DC),反之亦然,或者将直流电从低压转换为高压,反之亦然。在寻求可以提高开关速度的替代品时,氮化镓迅速成为领先的候选材料之一。GaN/AlGaN 材料体系表现出更高的电子迁移率和更高的击穿临界电场。结合高电子迁移率晶体管 (HEMT) 架构,与同类硅解决方案相比,它使器件和 IC 具有更高的击穿强度、更快的开关速度、更低的电导损耗和更小的占位面积。 

今天,大多数 GaN 电源系统由多个芯片组成。基于 GaN 的器件在组装到印刷电路板上之前作为分立元件组装。这种方法的缺点是存在影响器件性能的寄生电感。 

以司机为例。在单独的芯片上带有驱动器的分立晶体管受到驱动器输出级和晶体管输入之间以及半桥开关节点之间的寄生电感的影响。GaN HEMT 具有非常高的开关速度,当寄生电感未被抑制时,这会导致振铃——信号的不希望的振荡。减少寄生效应并利用 GaN 卓越的开关速度的最佳方法是将驱动器和 HEMT 集成在同一芯片上。 

同时,它减少了半桥中两个晶体管之间的死区时间控制,其中一个晶体管必须在另一个晶体管打开时关闭。在这期间,电源和地之间存在短路,或死区时间。在片上集成所有组件将解决振铃问题、减少死区时间并最终提高转换器的电源效率。 

D-Mode HEMT 的协同集成

Imec 已经在绝缘体上硅 (SOI) 基板上单片集成构建块(例如驱动器、半桥和控制/保护电路)取得了巨大进展。现在,研究人员已经成功地在产品组合中添加了两个广受欢迎的组件:耗尽型 (D-mode) HEMT 和肖特基二极管。 

200 毫米 GaN-on-SOI 衬底上制造的高压组件的工艺横截面:
a)E 型 p-GaN HEMT;(b) D 型 MIS HEMT;(c) 肖特基势垒二极管。所有器件都包括基于
前端和互连金属层并由介电层隔开的金属场板。

提高 GaN 功率 IC 的全部性能的主要障碍之一是找到合适的解决方案,以解决 GaN 中缺乏具有可接受性能的 p 沟道器件的问题。CMOS 技术使用互补且更对称的 p 型和 n 型 FET 对,基于两种 FET 的空穴和电子迁移率。然而,在 GaN 中,空穴的迁移率比电子的迁移率差大约 60 倍;在硅中,这只有 2 倍。这意味着以空穴为主要载流子的 p 沟道器件将比 n 沟道对应器件大 60 倍,而且效率极低。一种广泛使用的替代方法是用电阻器代替 P-MOS。电阻晶体管逻辑 (RTL) 已用于 GaN IC,但在开关时间和功耗之间表现出权衡。 

Imec 通过在其 SOI 上的功能增强模式 (E-mode) HEMT 平台上共同集成 D 模式 HEMTS,提高了 GaN IC 的性能。增强和耗尽模式是指在零源电压下的开启(D 模式)或关闭(E 模式)状态,导致晶体管中有电流流动(或不流动)。Imec 预计从 RTL 到直接耦合 FET 逻辑的步骤将提高速度并降低电路的功耗。 

具有低泄漏电流的肖特基二极管

肖特基势垒二极管的集成进一步提高了 GaN 功率 IC 的功率效率。与硅二极管相比,它们可以在相同的导通电阻下承受更高的电压或在相同的击穿电压下承受更低的导通电阻。 

制造肖特基势垒二极管的挑战是获得低导通电压,同时获得低泄漏水平。不幸的是,当您瞄准较低的导通电压时,您最终会遇到一个小的屏障来阻止泄漏电流,而肖特基二极管因泄漏电流高而臭名昭著。与传统 GaN 肖特基势垒相比,Imec 专有的栅极边缘端接肖特基势垒二极管架构 (GET-SBD) 可实现约 0.8 V 的低开启电压,同时将漏电流降低几个数量级二极管。 

快速开关和高电压

GaN 是大功率应用的首选材料,因为引起晶体管击穿的临界电压(击穿电压)比硅高 10 倍。但由于其卓越的开关速度,GaN 在低功率应用中仍然比硅具有优势。 

imec 创建的基于 GaN 的 IC 为更小、更高效的 DC/DC 转换器和负载点 (PoL) 转换器开辟了道路。例如,智能手机、平板电脑或笔记本电脑包含在不同电压下工作的芯片,需要 AC/DC 转换器为电池充电,设备内部需要 PoL 转换器以产生不同的电压。这些组件不仅包括开关,还包括变压器、电容器和电感器。晶体管的开关速度越快,这些组件就会变得越小,最终在相同功率下产生更紧凑和低成本的系统。 

快速电池充电器构成了当今 GaN 的最大市场,其次是用于服务器、汽车行业和可再生能源的电源。预计使用 GaN 的电源在系统级更可靠。它们的外形尺寸和重量更小,从而减少了材料清单,从而降低了成本。 

正在研究的垂直设备

Imec 将专注于提高现有平台的性能并进行进一步的可靠性测试。该公司目前提供用于原型设计的 200-V 和 650-V 平台,不久之后将推出 100V。对于具有集成组件的 GaN IC,1,200-V 大功率平台可能不会产生显着改进。电压越高,组件变得越慢。因此,可能没有必要在芯片上集成驱动程序;模拟将证实这一点。 

Imec 还在寻找分立 1,200-V 器件的替代品,为电动汽车等最高电压电源应用启用 GaN 技术。具有横向拓扑的晶体管是当今占主导地位的 GaN 器件架构。这些器件的三个端子(源极、栅极和漏极)位于同一平面的表面,因此电场是横向的,跨越 GaN 缓冲层和部分后端(金属化、氧化物)。在垂直器件中,源极和栅极位于表面,而漏极位于外延叠层的底部。在这种情况下,电场流过整个堆栈。决定器件击穿电压的是源漏分离,较大的分离可以保护通道不被击穿。然而,横向放置的源极和漏极之间的距离越大,器件越大。由于用于 1,200 V 设备的芯片会变得太大,因此通常建议横向架构最高达到 650 V。相反,对于垂直器件,使用更高的电压归结为创建更厚的外延堆叠,因为源极和漏极位于堆叠的不同端。芯片的表面积不会增加。 



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭