射频信号和电磁信号之间的相互转换依赖什么
扫描二维码
随时随地手机看文章
5G微基站射频芯片是应用于5G微基站的核心部件,主要用于解决室内场景的容量和覆盖问题。中国首个自主研发的5G微基站射频芯片YD9601由南京宇都通讯科技有限公司于2020年流片成功,覆盖700MHz广电频段及3.3-3.4GHz共享室内频段,支持5G时代室内共享微基站需求。该芯片发射功率优于国际同类产品,技术参数达到设计预期,并基于有线射频宽带HiNOC2.0芯片技术积累开发。南京经开区通过融资支持推动其量产计划,2021年投入商用。
基带电路的可编程已不是太大问题,但实现一个多频带多制式的射频前端却仍面临很大挑战。直到最近,人们还认为解决这个问题的方法是使用一排射频 MEMS开关,在几种不同的射频前端之间进行切换。随着一些公司开发可编程的多频带多标准的射频收发器IC,人们的观点正在改变。另一方面,射频MEMS仍然受到可靠性问题的困扰,而可编程射频硅解决方案正在为OEM厂商和系统设计师们提供真正的好处,尤其体现在家庭基站这类应用中。
家庭基站的未来取决于一系列关键挑战的解决程度,这些挑战例如功能性和成本等。还有像定时/同步,无线干扰以及从传统的宏蜂窝基站单元到家庭基站的切换等问题,都将影响家庭基站射频部分的设计和实现。多频段和多标准为本来就较长的供应链进一步增加了复杂性。
上述挑战在为家庭基站增添更多功能的时候将会出现,如为了接收像位置和定时这类信息时,向家庭基站添加的对附近的宏蜂窝基站单元的广播信道进行侦听的侦听模式。这些广播信道采用的可能是任意一种通用调制方案,不一定与家庭基站收发器所用的调制方式一致。为了将成本降至最低,并将家庭基站中的元器件数量降到最少,如果能够将主收发器的无线资源借过来实现侦听功能是最好不过的了。为了确保收发器不仅能够工作在一系列不同的频段上,而且还要能够处理不同的调制制式,同时为了满足进取的价格点还不能增加过多的辅助电路,这就需要一系列的设计考虑。
倘若可编程收发器具备足够的频率捷变能力,就无需随着标准和地域的不同而要求与之对应的专用收发器芯片。这种芯片能够被迅速和简便地重新编程,来适应不同的网络配置、带宽、数据传输率以及制式。
本文所提出的概念基于的是一个完全可配置的接收机,该接收机可以适用于主要的一些调制制式,并具有多路宽带低噪声放大器(LAN)输入,允许直接连接到多达3个接收频段的滤波器上,能够实现到侦听模式的无缝转换,而无需增添额外的接收机链路。该设计还允许下行链路在接收机独立工作的同时继续其自身广播信道的发射。
家庭基站具有独特的特性,它们是安装在终端用户家庭中的、必须能够与现有无线基础设施无缝连接的无线基础设备。一旦通电后,家庭基站必须能够根据其周边的宏蜂窝环境进行自配置。因此,它必须能够侦听其自己的宏蜂窝网络以及可能出现的其他频率以及调制制式。
该网络侦听模式要求家庭基站采用基于现有的单频和标准收发器方案的多路接收机通道/IC。随着没有器件可以利用的新频段的发布,使得问题变得更加复杂。
射频前端模块位于无线通讯系统中基带芯片的前端,是无线电系统的接收机和发射机,可实现射频信号的传输、转换和处理功能,是移动终端通信的核心组件。
其中天线主要负责射频信号和电磁信号之间的相互转换,射频芯片主要负责射频信号和基带信号之间的相互转换(即高频率电磁波信号与二进制信号的相互转换),射频前端负责将接收和发射的射频信号进行放大和滤波。
射频前端芯片包括射频开关(Switch)、射频低噪声放大器(LNA)、射频功率放大器(PA)、双工器(Duplexer)、射频滤波器(Filter)等芯片。
这些器件可并不是各做各的任务,而是彼此协调联动。射频PA是发射系统中的主要部分,其重要性不言而喻。射频PA可以将微弱信号放大为功率较高的信号,其性能直接决定信号的强弱、稳定性等重要因素,直接影响终端的用户体验。随着5G的商用,射频芯片的重要性也随之提升。可以说,5G时代给了射频行业一方更广阔的舞台。从当前的竞争格局来看,目前PA市场主要由国外厂商主导,市场份额集中在Skyworks、Qorvo和博通等国际厂商;中国射频PA芯片厂商依然处于起步阶段,市场话语权有限。不过,在这条充满挑战与机遇的细分赛道上,已涌现出数家标杆企业。国内射频PA有手机、基站、WiFi 、NB-IoT四大市场,手机为其国内最大终端应用市场。据 YoleDevelopment 数据,手机约占国内 PA 模组下游市场的 65%,其次为 WiFi占比 20%,基站市场约占 10%。
得益于5G换机周期和5G手机内PA所需量增加。据悉,一台4G手机所需的射频PA芯片为5-7颗,而5G时代将达到16颗之多,且单颗芯片价值比4G芯片更高,市场需求暴涨一倍有余。
根据市场调查机构 Counterpoint Research 公布的最新报告,预估 2024 年上半年全球每售出 3 台智能手机,就有 2 台具备 5G 功能,渗透率为 66.7%。该机构表示自 2019 年首款支持 5G 的智能手机问世以来,OEM 厂商正加速推广和普及 5G 技术;在 2023 年,支持 5G 的智能手机出货量超过 20 亿部。国产手机射频PA分为:2G PA、3G PA、4G PA、5G PA。从手机PA的竞争格局来看,在这一赛道里,国际厂商基本已经放弃了2G PA市场,并且国内本土的2G PA在各方面性能都不输国外产品,成本更低、优势更大。而本土的3G PA整体性能已媲美国外产品,具有成本优势;国产4G PA也已经做出一些成绩,在高功率5G PA方面,国产厂商与国际厂商还存在一些差距。近日,工信部公布了2024年上半年通信行业的经济运行情况,披露了5G网络建设的持续进展情况。
截至6月末,中国移动电话基站总数已经达到了1188万个,较去年末增加了26.5万个;5G基站的数量达到了391.7万个,自去年末以来净增了54万个,占到了移动基站总数的33%。这一占比相较于一季度提高了2.4个百分点。从市场规模来看,相较于4G,5G基站用到的PA数加倍增长。4G基站采用4T4R方案,按照三个扇区,对应的射频PA需求量为12个,5G基站中64T64R成为主流方案,对应的PA需求量高达192个。
5G基站射频PA市场规模远远大于4G,有望迎来量价齐升。5G基站PA主要有三种:基于硅的横向扩散金属氧化物半导体(Si LDMOS)、砷化镓(GaAs)、氮化镓(GaN),分别代表第一、二、三代半导体材料。其中LDMOS与GaN功率放大器适用于宏基站,GaAs功率放大器适用于小基站。LDMOS功率放大器仅在3.5GHz频率范围内有效,而GaN功率放大器则能有效满足5G的高功率、高通信频段和高效率等要求。LDMOS是一种成熟且价格低廉的技术,在4G基站市场上率先领先。LDMOS 适用于较低频段,一些移动运营商正在为 5G 部署低频段和高频段。
LDMOS功率放大器市场主要由Freescale、NXP、Infineon垄断。GaAs PA的主要厂家有Skyworks、Qorvo、Broadcom、日本村田;GaN PA的主要国外厂家有住友电工、Cree、Qorvo 和 MACOM,其中住友电工与Cree是行业龙头,市场占有率均超过30%。
国产基站PA厂商有至晟微、安其威微、芯百特、明夷科技等。相比国外主流厂商,国产厂商大都成立时间短且规模小,因此在技术/产品成熟度、解决方案以及市场推广能力、稳定供货等多方面存在诸多短板。





