氨气(NH₃)作为一种具有特殊性质的气体,在众多行业中扮演着举足轻重的角色。其独特的化学性质决定了它在各行业有着广泛的应用,但同时也伴随着一定的潜在危害。因此,了解氨气在各行业应用中的重要性、潜在危害以及相应的监测技术具有重要意义。
在当今电子设备多样化和高性能化的发展趋势下,开关稳压电源作为关键的供电部件,其性能优劣直接影响着设备的整体表现。双环反激开关稳压电源凭借独特的电路拓扑和工作特性,在中小功率应用领域占据重要地位。传统控制电路在面对复杂工况时,暴露出诸如动态响应慢、稳定性欠佳等问题,开发一种新型控制电路以提升双环反激开关稳压电源的综合性能迫在眉睫。
自动装料衡器在工业生产中应用广泛,其精准度和稳定性至关重要。开关电源因其体积小、效率高、重量轻等优势,在自动装料衡器中得到大量使用。然而,开关电源工作时会产生电磁干扰(EMI),这可能影响自动装料衡器的正常运行,导致称量不准确、控制信号异常等问题。深入研究开关电源电磁干扰的成因并采取有效的抑制措施,对提高自动装料衡器的性能具有重要意义。
在全球倡导环保与可持续发展的大背景下,汽车行业正经历着一场深刻变革,混合动力汽车(HEV、PHEV)与电动汽车(BEV)逐渐成为市场新宠。这一转变不仅改写了汽车动力系统的格局,更为锂电池市场带来了前所未有的发展契机,锂电池市场规模急剧扩张,技术迭代加速,成为能源与交通领域的焦点。
在科技飞速发展的今天,机器视觉技术作为人工智能领域的重要分支,正深刻地改变着汽车行业的面貌。从汽车的设计研发、生产制造,到质量检测、物流管理,机器视觉技术的身影无处不在,为汽车行业的智能化、自动化发展注入了强大动力。
在现代电子设备中,晶振作为提供精确时钟信号的核心元件,其重要性不言而喻。从智能手机、计算机到汽车电子、通信基站,晶振的身影无处不在,它如同电子设备的 “心脏起搏器”,确保各种复杂电路有条不紊地运行。而晶振的核心 —— 石英晶体,凭借其独特的物理特性,在经过一系列精密复杂的生产工艺后,华丽变身为高精度振荡器,为电子设备的稳定运行提供坚实保障。
开关电源(SMPS)凭借高效、小型化的优势,广泛应用于电子设备中。但开关电源在工作时,因高频开关动作、元器件特性等因素,容易产生噪声。这些噪声不仅会影响自身性能,还可能干扰周边电子设备,因此准确测量开关电源中的噪声至关重要。下面将详细介绍测量开关电源噪声的相关知识和具体方法。
安全地的主要作用是保障人身安全和设备的稳定运行。在电气设备中,当发生绝缘损坏等故障时,可能会使设备外壳带电,若没有安全接地,人体一旦接触到带电外壳,就会发生触电事故。通过将设备外壳与大地进行可靠连接,当出现故障电流时,电流能够迅速通过接地导线流入大地,因为大地的电位被视为零电位,且接地电阻通常很小,根据欧姆定律,这样就可以保证设备外壳的电位接近大地电位,从而避免人体触电。例如,在家庭用电中,三孔插座的最上方插孔就是连接安全地的,所有使用三脚插头的电器,其金属外壳都通过插头与安全地相连,为用户提供了基本的安全保障。
在当今汽车行业,电动化与智能化已成为不可逆转的发展潮流。在这一趋势的推动下,汽车电机作为车辆运行和各类功能控制的核心部件,其重要性日益凸显。而磁传感器,作为能够精准感知磁场变化并将其转化为电信号的关键元件,在汽车电机领域正迎来前所未有的发展机遇,市场呈现出快速增长的态势。
随着科技的飞速发展,自动驾驶汽车逐渐从科幻走向现实,成为未来交通的重要发展方向。在自动驾驶汽车的诸多关键技术中,道路识别是确保车辆安全、高效行驶的基础。正确识别道路环境,能使车辆做出合理的行驶决策,避免碰撞事故,提高交通效率。那么,自动驾驶汽车究竟是如何实现精准的道路识别的呢?这涉及到多个关键技术领域的协同工作。
在构建可持续能源未来的征程中,光伏系统作为关键角色,正不断拓展其在全球能源版图中的地位。从大规模的光伏电站到分布式的屋顶光伏设施,其应用场景日益广泛。而在光伏系统复杂的架构中,电压电流传感器扮演着极为重要的角色,尤其是在接地故障检测与中断(GFDI)领域,其作用关乎系统的安全性、稳定性与高效性。
在电子电路的设计与应用中,确保电源进入集成电路(IC)的稳定性至关重要。电源去耦作为一种关键技术手段,对于维持电源进入 IC 各点的低阻抗发挥着不可或缺的作用。无论是模拟集成电路,如放大器和转换器,还是混合信号器件,像 ADC 和 DAC,亦或是数字 IC,例如 FPGA,它们的正常工作都与电源的稳定性紧密相连。
在汽车行业向智能化、自动化飞速迈进的当下,汽车电子系统变得愈发复杂且精密。从先进的驾驶辅助系统(ADAS)到高度集成的车身控制模块,从智能座舱的各类信息娱乐设备到自动化的动力系统管理,每一个汽车模块的高效、稳定运行,都离不开可靠的电源供应。稳压电源,作为保障汽车电子设备稳定工作的关键部件,其重要性不言而喻,已成为推动汽车智能自动化发展的核心要素之一。
在汽车电子系统不断发展的当下,采用智能手段控制车内外照明愈发关键。同时,紧凑的车身控制模块集成的功能持续增多,这一趋势也带来了诸多技术挑战。其中,汽车照明系统对电子元器件的要求日益严苛,而智能复用器在解决 PWM 通道、诊断功能和系统可靠性问题等方面展现出了显著优势。本文将详细阐述如何利用智能复用器对车用上桥臂驱动器进行升级。
在电子设备的电源供应领域,如何实现高效且稳定的供电一直是工程师们不懈追求的目标。开关稳压器因其较高的效率在众多应用中得到广泛使用,然而,其固有的噪声问题却常常成为限制其进一步应用的瓶颈。尤其是在为对噪声极为敏感的设备,如 ADC、PLL 或 RF 收发器等供电时,开关稳压器的噪声可能会显著降低这些设备的性能。为了解决这一问题,在开关稳压器的输出端增加次级 LC 滤波器成为一种常见的做法,它能够有效减少纹波和抑制噪声。但是,传统的设计方式中,二级 LC 输出滤波器也带来了新的挑战,如功率级传输函数建模为不稳定的四阶系统,若考虑电流环路的采样数据效应,完整的控制至输出传递函数甚至会变为五阶系统,这使得系统稳定性难以保证。那么,是否存在一种方法,能让带有次级 LC 滤波器的开关稳压器在保证高效的同时,实现稳定且低噪声的电源供应呢?答案是肯定的,有一种创新的混合反馈方法可以达成这一目标。