当前位置:首页 > 模拟 > 模拟
[导读]摘要:为在高线性的前提下提高WCDMA基站系统中功率放大器的效率,仿真设计了一款工作于2.14 GHz频段不对称功率驱动的Deherty功率放大器。基于ADS平台,采用MRF6S21140H LDMOS晶体管,通过优化载波放大器和峰值放大器

摘要:为在高线性的前提下提高WCDMA基站系统中功率放大器的效率,仿真设计了一款工作于2.14 GHz频段不对称功率驱动的Deherty功率放大器。基于ADS平台,采用MRF6S21140H LDMOS晶体管,通过优化载波放大器和峰值放大器的栅极偏置电压改善三阶互调失真(IMD3),同时通过调节输入功率分配比例改善由于峰值放大器对载波放大器牵引不足导致的失配问题,从而改善不对称Doberty功率放大器的输出性能。仿真结果表明,当载波放大器的栅极偏置电压为2.84V,峰值放大器的栅极偏置电压为0.85 V并且输入功率比例为1:2.3,输出功率为44 dBm时其功率附加效率(PAE)为24.21%,IMD3为-44.46 dBc,和传统AB类平衡功率放大器相比PAE提高了8.58%,IMD3改善了6.98dBc。
关键词:不对称Doberty功率放大器;功率附加效率;三阶互调失真;栅极偏置电压;MRF6S21140H LDMOS

    对于现代无线通信系统,多载波、宽带、高传输速率已经成为其发展的方向。随着频谱资源的日益紧张,为了在有限的带宽内传输更多的数据,在WCDMA系统中采用BPSK和QPSK等非线性调制方式,系统的瞬时传输功率产生较高的峰均比,功率放大器需要通过较大的功率回退的方式来满足系统对线性度的要求。目前WCDMA基站或直放站中的功率放大器是最主要的功耗单元,为了满足系统线性度的要求通常偏置在A类和AB类,效率都比较低,一般在8%~15%。因此,研究设计线性高效的射频功率放大器成为功率放大器研究领域的一个热门课题,Doberty结构的功率放大器以其效率高、实现方法简单、成本低廉等优点引起了人们越来越多的关注和研究。本文基于ADS仿真平台,在深入研究分析Doherty结构的工作原理和优缺点的基础上,设计了一款满足WCDMA基站性能要求的不对称Doberty功率放大器。

1 不对称Doberty功率放大器的基本理论
1.1 传统Doberty功率放大器的工作原理
    传统Doberty功率放大器的结构示意图如图1所示,它一般由载波放大器(Carrier Amplifier)和峰值放大器(PeakingAmplifier)并行连接组成。其中载波放大器一般偏置在AB类工作模式,输出端串联一个微带线起阻抗变换的作用;峰值放大器一般偏置在C类工作模式,输入匹配网络前端附加的微带线起到相位平衡的效果。


    由图1可以看出,传统Doberty结构的功率放大器有两种工作状态:低输出功率状态(图1中的有斜条纹)和高输出 功率状态(图1中的无斜条纹)。在高输出功率状态,理想情况下2个放大器的输出电流大小相等,载波放大器和峰值放大器产生相等的输出功事。这时载波放大器和峰值放大器的负载阻抗都为R0,通常情况下R0=50Ω。在低输出功率状态,峰值放大器截止不工作,只有载波放大器导通工作。理论上此时的峰值放大器的输出阻抗趋于无穷大,峰值放大器对负载网络阻抗的影响可以忽略。载波放大器输出端的负载阻抗通过特性阻抗为的R0的λ/4微带线将的R0/2变换到2R0,这样可以实现在低输出功率状态下高的负载阻抗达到效率的提高。此时载波放大器的饱和输出功率要比总的峰值输出功率小4倍,即传统Doherty功率放大器在低输出功率区域的饱和输出功率要比峰值饱和输出功事低6 dB,从而实现了提前饱和的目的,提高功率回退时的效率。
1.2 不对称Doherty功率放大器的基本理论
    传统Doherty结构的功率放大器,载波放大器偏置在AB类,而峰值放大器一般偏置在C类,当输入的信号相同,峰值放大器的电流必然低于载波放大器的电流。在输出功率饱和时由于两个放大器的输出电压相等,峰值放大器的输出功率必然小于载波放大器的输出功率,这与理想的情况不同。根据有源负载牵引理论,当峰值放大器的电流没有达到理想值时,必然导致峰值放大器对载波放大器的牵引不足,使得载波放大器的输出阻抗在从高阻100Ω向50 Ω的低阻抗变化过程中,没有牵引到50 Ω,最终影响到Doherty功率放大器的性能。不对称Doherty功率放大器是在传统Doherty功率放大器的基础上做的改进,一般有不对称功率驱动和不同的功率放大器管这两种实现方法。和采用不同的功率放大器管这种实现方法相比,不对称功率驱动的方案在结构上要相对简单,容易实现。对于不对称Doherty功率放大器,在低输出功率状态,载波放大器偏置在AB类,峰值放大器截止,功率放大器的线性度主要取决于载波放大器。在高输出功率状态,不对称Doherty功率放大器的线性度可以通过调节两个功率放大器管的栅极偏置优化IMD3性能。因此在设计中,可以不断的调节载波放大器和峰值放大器的输人功率分配比和栅极偏置电压,使得设计的不对称功率放大器性能最佳。在下面的章节中,基于ADS仿真平台,选用飞思卡尔的MRF6S21140H功放管设计了一款工作在2.14 GHz频段WCDMA基站的不对称功率驱动的Doherty功率放大器。

2 不对称Doherty功率放大器的仿真设计
    在仿真设计中,利用ADS平台可以很好的简化设计步骤,缩短研发周期,仿真设计中所用到的MRF6S21140H功放管模型是由飞思卡尔提供的一种半经验模型。仿真设计中通过对晶体管直流偏置和稳定性的仿真分析,确定了晶体管的静态工作点和稳定状态。利用ADS中的负载牵引和源牵引仿真得到晶体管一簇不同阻抗值的等功率圆和等效率圆,分析得到适用于不对称Doherty功率放大器的最佳阻抗值,同时在偏置电路中应用优化阻抗法较好地降低了电记忆效应。通过在匹配网络中综合考虑补偿网络的设计思想,设计补偿线,更有效的抑制了不对称Doherty功率放大器的功率泄露,提高了输出效率。在完成不对称Doherty功率放大器的各个模块的仿真设计后,调整输入端微带线使得载波放大器和峰值放大器两条支路输出信号的相位对齐,并通过原理图-版图联合仿真优化设计的不对称功率放大器的性能,提高了仿真的精确度,缩小仿真和实际应用的差距。同时对比在不同的输入端功分器的功率分配比例和栅极偏置电压的仿真结果,发现当载波放大器的栅极偏置电压为2.84V,峰值放大器的栅极偏置电压为0.85V,漏极偏置电压为28V时,输入端功分器的功率分配比为1:2.3的不对称Doherty功率放大器的性能最佳。图2为1:2.3不对称功率驱动的Doherty功率放大器与AB类平衡功率放大器的功率附加效率(PAE)比较曲线图。从图2可以看出,峰值饱和输出功率约为55.8dBm,因此不对称结构能改善由于峰值放大器对载波放大器牵引不足导致的失配问题,使得蜂值饱和输出功率较为理想。当从峰值输出功率回退11.8dB时,即输出功率为44dBm,仿真得到的1:2.3不对称功率驱动的Doherty功率放大器PAE为24.21%,AB类平衡功率放大器的PAE为15.63%。因此1:2.3不对称功率驱动的Doherty功率放大器比AB类平衡功率放大器的PAE提高了8.58%。


    分析图3的不对称功率驱动的Doherty功率放大器与AB类平衡功率放大器的三阶互调失真(IMD3)比较曲线图可以发现,设计的1:2.3不对称功率驱动的Doherty功率放大器的线性度较为理想。当输出功率为43 dBm时,1:2.3不对称功率驱动的Doherty功率放大器的IMD3为-42.24 dBc,AB类平衡功率放大器的IMD3为-36.61 dBc,1:2.3不对称功率驱动的Doherty功率放大器在IMD3指标上改善了5.63dBc。当输出功率为44 dBm时,1:2.3不对称功率驱动的Doherty功率放大器的IMD3为-44.46dBc,AB类平衡功率放大器的IMD3为-37.48dBc.1:2.3不对称功率驱动的Doherty功率放大器在IMD3指标上改善了6.98dBc。


    对比上述的仿真结果可以看出(对比结果如表1所示),采用1:2.3不对称功率驱动的Doherty功事放大器能够很好的实现高线性和高效率的良好折中,设计出的功率放大器的仿真结果性能良好,和目前在实际中常采用的AB类平衡功率放大器相比在高线性度的要求下效率上有很大的提高。

3 结束语
    为了适应现代无线通信系统中对功率放大器提出的高效率高线性度的要求,本文基于ADS仿真平台,采用飞恩卡尔的MRF6S21140H功放管设计出一款适合于2.14 GHz频段WCDMA基站的不对称功率驱动的Doherty功率放大器。仿真结果表明设计的1:2.3不对称功率驱动的Doherty功率放大器在载波放大器的栅极偏置电压为2.84 V,峰值放大器的栅极偏置电压为0.85 V且漏极偏置电压都为28 V时的性能良好。在输出功率为44 dBm,设计的1:2.3不对称功率驱动的Doherty功率放大器的PAE为24.21%,IMD3为-44.46dBc,和AB类平衡功放相比PAE提高了8.58%,IMD3改善了6.98dBc。
    从仿真结果可以看出,不对称Doherty功率放大器结构简单,效率较高且线性度好,非常适合于WCDMA移动通信基站和直放站的应用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在现代通信系统中,功率放大器(PA)作为关键组件,其效率的提升对于降低能耗、延长设备续航以及提高系统性能具有至关重要的意义。随着通信技术的不断发展,如 5G 乃至未来 6G 的演进,信号的峰均比(PAPR)不断提高,传统...

关键字: 通信系统 功率放大器 包络跟踪

扬声器是沉重的负载,它们通常需要由外部电路提供的高电流来驱动。这是因为有时产生的声音输出,比如从麦克风或吉他的拾音器线圈,不产生大电流高幅度输出,因此,它不适合驱动扬声器。这就是为什么我们有一个叫做音频放大器的东西。有许...

关键字: 功率放大器 TIP35C 扬声器 前置放大器

音频放大器是一种将低功率音频信号放大到适合驱动扬声器的电平的电子电路。这些放大器用于无线通信和广播,以及各种音频设备。有许多类别的放大器,我们以前已经建立了很多音频放大器电路,从小型10W放大器到重型100W功率放大器。

关键字: 音频放大器 TDA2822 电子电路 功率放大器

所有内含音频功率放大器的电子设备,例如立体声电视机以及多通道AV接收机,通常都有一个重要的指标,即输出功率,该指标是指所能提供的最大音量,这对于许多消费者来说是一个重要的指标。

关键字: 音频 功率放大器

上海2024年11月8日 /美通社/ -- 全球数据和分析驱动的决策赋能机构邓白氏(Dun & Bradstreet)以"掌舵数据 领航商海"为主题参加第七届中国国际进口博览会,并携新品再次亮...

关键字: 大数据 生成式AI AI ADS

上饶2024年10月31日 /美通社/ -- 日前,国际独立第三方检测、检验和认证机构德国莱茵TÜV(简称"TÜV莱茵")授予上饶领创...

关键字: 吉利汽车 测试 ADS 智能化

在射频信号链中,功率放大器(PA)是位于发射机信号链电路和天线之间的有源元件, 图1 .它通常是一个单独的离散组件,它的要求和参数不同于传输链和接收电路的要求和参数。这个常见问题将研究巴勒斯坦权力机构的作用及其特征。

关键字: 射频信号 功率放大器

第一部分 其中常见问题包括射频功率放大器(PA)的基本作用和功能。这一部分探讨了在考虑可能的PA设备时需要考虑的一些因素。这并不是一个详细的分析,说明许多参数的特点,包括许多独特的PA功能。

关键字: 射频信号 功率放大器

无线电通信系统稳步提高数据速率和总体系统性能。随着性能的提高,对电力消耗的压力越来越大。最近的一份行业报告[参考1]得出结论,典型的5G基站的耗电量为12千瓦,而LTE基站的耗电量为7千瓦。大约有5个烤面包机的额外能量被...

关键字: 射频 功率放大器 效率计算

9月29日消息,日前余承东和马东直播过程中,马东提问余承东,激光雷达是必要的吗?

关键字: ADS 鸿蒙
关闭