当前位置:首页 > 模拟 > 模拟
[导读]O 引言  电路中的功率消耗源主要有以下几种:由逻辑转换引起的逻辑门对负载电容充、放电引起的功率消耗;由逻辑门中瞬时短路电流引起的功率消耗;由器件的漏电流引起的消耗,并且每引进一次新的制造技术会导致漏电流

O 引言

  电路中的功率消耗源主要有以下几种:由逻辑转换引起的逻辑门对负载电容充、放电引起的功率消耗;由逻辑门中瞬时短路电流引起的功率消耗;由器件的漏电流引起的消耗,并且每引进一次新的制造技术会导致漏电流20倍的增加,漏电流引起的消耗已经成为功率消耗的主要因素。目前降低功耗的方法主要有:减小电源电压、调整晶体管尺寸、采用并行和流水线的系统结构、利用睡眠模式、采用绝热逻辑电路等。其中,能量回收逻辑就是基于绝热计算发展起来的一种低功耗设计技术。

这里简单介绍一种使用单相正弦电源时钟的能量回收逻辑,并用这种原理电路设计了一个两位的数字乘法器电路,与静态CMOS数字乘法器相比,这种能量回收乘法器能够大大降低功率消耗。

  1 单相正弦电源时钟能量回收逻辑电路工作原理

  以反相器为例说明这种电路的工作原理,如图1所示。M1和M2的连接方式与传统的静态CMOS逻辑电路相似。不同的是电源不再是恒定不变的,而是用一个正弦信号代替,这个信号同时起到同步电路工作的作用,因此又称作电源时钟。M3和M4连接成二极管的形式用来控制充放电的路径。

  

<center>


 

  当输入信号B为逻辑“O”时,M1导通,M2截止。正弦信号正半周时,通过M3和M1向负载电容充电,一旦电容充电到最大值,M3能够阻止电容向输入正弦时钟信号放电,输出保持在高电平不变。当输入信号B为逻辑“1”时,M1截止,M2导通。正弦信号负半周时,负载电容通过M2和M4向输入正弦时钟信号放电,一旦电容放电到最小值,M4能够阻止输入正弦时钟信号向电容充电,输出保持为低电平不变。

  2 基于单相能量回收电路的乘法器电路设计

  2.1 基于单相能量回收电路的乘法器

  两位乘法器能够实现2位二进制数的乘法运算,设A1A0,B1B0为乘数和被乘数,P3P2P1P0为乘法运算得到的积,由卡诺图(见图2)得到两位乘法器的输出逻辑函数表达式分别为:

  

 

  


为了能用基本的与非门、或非门和异或门电路实现乘法器,上式可以通过逻辑运算变换为:

  

 

  实现电路时,将静态CMOS电路(见图3)构成的与非门、或非门和异或门的电源用图4所示的电源时钟电路代替即可。其中Clk+,Clk-分别接CMOS电路中PMOS和NMOS管的D极和S极。

 

  

 

  

 

  2.2 仿真结果

  在PSpice环境下,分别仿真了用静态CMOS电路和单相能量回收电路构成的两位乘法器电路(见图5和图6),图中只显示了输出4位积的低2位P1P0,其中输入信号A1A0,B1B0波形见图6。其他参数如下:采用CMOS 1.2μm技术,正弦波峰峰值为2.5 V,直流电压VDD为2.5 V,并假设乘法器的输出端接负载电容为O.1 fF。
 

 

  从图中可见,用静态CMOS电路构成的乘法器输出比较稳定,输出等于0或VDD,功率消耗为1.51×10-7W。而用单相能量回收电路构成的二位乘法器的输出不够稳定,对噪声信号较为敏感,但是并不影响输出逻辑,功率消耗减小为1.17×10-7W。从节能的角度来看,单相能量回收电路性能更好。

  3 结语

  本文首先介绍了单相能量回收反相器电路,详细讨论电路的工作原理,同时用PSpice工具仿真了基于静态CMOS电路和单相能量回收电路构成的两位乘法器电路。仿真结果表明本文介绍的单相能量回收电路能够极大地降低电路功耗。今后的工作还应继续优化电路结构,稳定电路的输出状态,增强电路的抗干扰能力。

center>
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年4月17日 /美通社/ -- 在2024 F1中国站即将拉开帷幕之际,高端全合成润滑油品牌美孚1号今日举办了品牌50周年庆祝活动。三届F1年度车手总冠军马克斯•维斯塔潘也亲临现场,共同庆祝这一里程...

关键字: BSP 汽车制造 行业标准 产品系列

北京2024年4月17日 /美通社/ -- 2024年4月13日,由北京康盟慈善基金会主办的"县域诊疗,规范同行"——肿瘤诊疗学术巡讲项目首站在广州隆重召开。本次会议邀请全国多位肺癌领域专家和县域同道...

关键字: AI技术 医疗服务 BSP 互联网

海口2024年4月16日 /美通社/ -- 4月14日,在中法建交60周年之际,科学护肤先锋品牌Galenic法国科兰黎受邀入驻第四届中国国际消费品博览会(以下简称"消博会")法国馆。Galenic法...

关键字: NI IC BSP ACTIVE

上海2024年4月17日 /美通社/ -- 每年4月17日是世界血友病日。今年,世界血友病日以"认识出血性疾病,积极预防和治疗"为主题,呼吁关注所有出血性疾病,提升科学认知,提高规范化诊疗水平,让每一位出血性疾病患者享有...

关键字: VII 动力学 软件 BSP

伦敦2024年4月16日 /美通社/ -- ATFX宣布任命Siju Daniel为首席商务官。Siju在金融服务行业拥有丰富的经验和专业知识,曾在全球各地的高管职位上工作了19年以上。Siju之前担任FXCM首席商务官...

关键字: NI AN SI BSP

D类音频放大器参考设计(EPC9192)让模块化设计具有高功率和高效,从而可实现全定制、高性能的电路设计。

关键字: 音频放大器 电路设计

可调电容作为一种重要的电子元器件,在电路设计中具有广泛的应用。本文将对可调电容的基本概念、工作原理、调用方法以及应用场景进行详细探讨,旨在帮助读者更好地理解和应用可调电容。

关键字: 可调电容 电子元器件 电路设计

近日,国内新一代激光陀螺驱动系列功能芯片问世,由湖南二零八先进科技有限公司(下简称“二零八公司”)技术团队研发。相比行业内普遍应用的上一代激光陀螺驱动控制电路,激光陀螺驱动专用芯片降低了电路设计难度,大幅减小体积重量,实...

关键字: 激光陀螺仪电路 芯片 电路设计

R是施密特触发器输入端的一个10KΩ下拉电阻,时间常数为10×10-6×10×103=100ms。

关键字: 复位 电路设计 施密特触发器
关闭
关闭