当前位置:首页 > 模拟 > 模拟
[导读]放大器和比较器的区别比较器典型应用电路   这里举两个简单的比较器电路为例来说明其应用。  1.散热风扇自动控制电路  一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以

放大器比较器的区别

 

1.放大器与比较器的主要区别是闭环特性

放大器大都工作在闭环状态,所以要求闭环后不能自激。而比较器大都工作在开环状态更追求速度。对于频率比较低的情况放大器完全可以代替比较器(要主意输出电平),反过来比较器大部分情况不能当作放大器使用。

因为比较器为了提高速度进行优化,这种优化却减小了闭环稳定的范围。而运放专为闭环稳定范围进行优化,故降低了速度。所以相同价位档次的比较器和放大器最好是各司其责。如同放大器可以用作比较器一样,也不能排除比较器也可以用作放大器。但是你为了让它闭环稳定所付出的代价可能超过加一个放大器!

换言之,看一个运放是当作比较器还是放大器就是看电路的负反馈深度。所以,浅闭环的比较器有可能工作在放大器状态并不自激。但是一定要作大量的试验,以保证在产品的所有工作状态下都稳定!这时候你就要成本/风险仔细核算一下了。

2.算放大器和比较器如出一辙,简单的讲,比较器就是运放的开环应用,但比较器的设计是针对电压门限比较而用的,要求的比较门限精确,比较后的输出边沿上升或下降时间要短,输出符合TTL/CMOS电平/或OC等,不要求中间环节的准确度,同时驱动能力也不一样。一般情况:用运放做比较器,多数达不到满幅输出,或比较后的边沿时间过长,因此设计中少用运放做比较器为佳。

比较器和运放虽然在电路图上符号相同,但这两种器件确有非常大的区别,一般不可以互换,区别如下:

1)、比较器的翻转速度快,大约在ns数量级,而运放翻转速度一般为us数量级(特殊的高速运放除外)。

2)、运放可以接入负反馈电路,而比较器则不能使用负反馈,虽然比较器也有同相和反相两个输入端,但因为其内部没有相位补偿电路,所以,如果接入负反馈,电路不能稳定工作。内部无相位补偿电路,这也是比较器比运放速度快很多的主要原因。

3)、运放输出级一般采用推挽电路,双极性输出。而多数比较器输出级为集电极开路结构,所以需要上拉电阻,单极性输出,容易和数字电路连接。

通过以上我们可以看出放大器和比较器还是有比较多的区别的,但是放大器可以替代比较器吗?都有哪些的注意点呢?

运算放大器可以替代比较器吗?

许多人偶尔会把运算放大器当比较器使用。一般而言,当您只需要一个简单的比较器,并且您在四运算放大器封装中还有一个“多余”运算放大器时,这种做法是可行的。稳定运算放大器运行所需的相位补偿意味着把运算放大器用作比较器时其速度会非常的低,但是如果对速度要求不高,则运算放大器可以满足需求。偶尔会有人问到我们运算放大器的这种使用方法。这种方法有时有效,有时却不如人们预期的那样效果好。为什么会出现这种情况呢?

许多运算放大器都在输入端之间有电压钳位,其大多数一般都使用背靠背二极管(有时使用两个或者更多的串联二极管)来实施。这些二极管保护输入晶体管免受其基极结点反向击穿的损害。差动输入为约 6V 时便会出现许多 IC 工艺击穿,这会极大地改变或者损坏晶体管。下图显示了 NPN 输入级,D1 和 D2 提供了这种保护功能。

在大多数常见运算放大器应用中,输入电压均约为零伏,其根本无法开启这些二极管。但是很明显,对于比较器的运行而言,这种保护便成了问题。在一个输入拖拽另一个输入(以一种讨厌的方式拉其电压)以前,差动电压范围(约0.7V)受限。尽管如此,但我们还是可以把运算放大器用作比较器。但是,在我们这样做时必须小心谨慎。在一些电路中,这种做法可能是完全不能接受的。

问题是我们(包括其他运算放大器厂商)并没有总是说明这些钳位的存在。即使有所说明,我们可能也不会做详细的解释或者阐述。也许我们应该说:“用作比较器时,请小心谨慎!”产品说明书的作者们通常也只是假设您肯定会把运算放大器当作运算放大器用。最近,我们在美国亚利桑那州图森产品部召开了一个会议。会议决定,我们以后将会更加清楚地说明这种情况。但是,现在已经生产出来的运算放大器怎么办呢?下列指导建议可能会对您有所帮助:

一般而言,双极 NPN 晶体管运算放大器都有输入钳位,例如:OP07、OPA227 和 OPA277 等。uA741 是一个例外,它具有 NPN 输入晶体管,并且有一些为 NPN 提供固有保护的附加串联横向 PNP。

使用横向 PNP 输入晶体管的通用运算放大器一般没有输入钳位,例如:LM324、LM358、 OPA234、OPA2251 和 OPA244。这些运算放大器一般为“单电源”类型,其意味着它们拥有一个扩展至负电源端(或者稍低)的共模范围。输入偏置电流为一个负数时,表示输入偏置电流自输入引脚流出。这时,我们通常可以认定它们为这类运算放大器。但是,需要注意的是,使用 PNP 输入的高速运算放大器一般有输入钳位,而这些 PNP 是一些具有更低击穿电压的垂直 PNP。

更高电压(一般大于 20V)下工作的 JFET 和 CMOS 放大器,可能有也可能没有钳位。这种不确定性,要求您进行更多仔细的检查。所用工艺和晶体管类型的特性,决定了其内部是否存在钳位。

大多数低压 CMOS 运算放大器都没有钳位。自动归零或者斩波器类型是一个特例,其可能具有类似钳位的行为表现。

底线是……如果您考虑把运算放大器用作比较器,请一定小心谨慎。仔细阅读产品说明书,不要漏掉一点信息,包括应用部分的一些注解内容。在电路试验板或者样机中验证其表现,查看一个输入电压对另一个输入电压的影响。不要依赖 SPICE 宏模型。一些宏模型可能并不包括对钳位建模的一些额外组件。另外,当您笨手笨脚地把运算放大器从一个轨移动到另一个轨时可能出现其他一些现象,我们可能无法精确地对这些现象建模。

比较器典型应用电路

 

  这里举两个简单的比较器电路为例来说明其应用。

  1.散热风扇自动控制电路

  一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。这里介绍一种极简单的温度控制电路,如图7所示。负温度系数(NTC)热敏电阻RT粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度略低一些),当5V电压加在RT及R1电阻上时,在A点有一个电压VA。当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升。RT的温度特性如图8所示。它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值。R1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为R1值不变),则可以计算出在80℃时的VA值。

 

  

 

  R2与RP组成分压器,当5V电源电压是稳定电压时(电压稳定性较好),调节RP可以改变VB的电压(电位器中心头的电压值)。VB值为比较器设定的阈值电压,称为VTH。

  设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值。一旦VA》VTH,则比较器输出低电平,继电器K吸合,散热风扇(直流电机)得电工作,使大功率器件降温。VA、VTH电压变化及比较器输出电压Vout的特性如图9所示。这里要说清楚的是在VA开始大于VTH时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下。

 

  从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可。VTH值增大,TTH增大;反之亦然,调整十分方便。只要RT确定,RT的温度特性确定,则R1、R2、RP可方便求出(设流过RT、R1及R2、RP的电流各为0.1~0.5mA)。

  2.窗口比较器

  窗口比较器常用两个比较器组成(双比较器),它有两个阈值电压VTHH(高阈值电压)及VTHL(低阈值电压),与VTHH及VTHL比较的电压VA输入两个比较器。若VTHL≤VA≤VTHH,Vout输出高电平;若VA《VTHL,VA》VTHH,则Vout输出低电平,如图10所示。图10是一个冰箱报警器电路。冰箱正常工作温度设为0~5℃,(0℃到5℃是一个“窗口”),在此温度范围时比较器输出高电平(表示温度正常);若冰箱温度低于0V或高于5℃,则比较器输出低电平,此低电平信号电压输入微控制器(μC)作报警信号。

 

  温度传感器采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5 uA,可求出R1的值。R1的值确定后,可计算出0℃时的VA值为0.5V(按图10中R1=665kΩ时),5℃时的VA值为0.42V,则VTHL=0.42V,VTHH=0.5V。若设R2=665kΩ,则按图11,可求出流过R2、R3、R4电阻的电流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=(R3+R4)0.0015mA, 则可求出R3=53.3kΩ。

 

  本例中两个比较器采用低工作电压、低功耗、互补输出双比较器LT1017,无需外接上拉电阻。

总结:虽然在某种情况下运算放大器可以作为比较器来使用,但是当你对运算速度的要求较高时,运算放大器就不能满足比较器的需求了。通过这篇文章大家可以充分了解到运算放大器与比较器的不同之处及运算放大器在何种情况下可用作比较器,也让大家对放大器比较器有了充分的认识与理解。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

柏林2025年9月9日 /美通社/ -- 2025年9月5日,纳斯达克上市公司优克联集团(NASDAQ: UCL)旗下全球互联品牌GlocalMe,正式亮相柏林国际消费电子展(IFA 2025),重磅推出融合企...

关键字: LOCAL LM BSP 移动网络

深圳2025年9月9日 /美通社/ -- PART 01活动背景 当技术的锋芒刺穿行业壁垒,万物互联的生态正重塑产业疆域。2025年,物联网产业迈入 "破界创造"与"共生进化" 的裂变时代——AI大模型消融感知边界,...

关键字: BSP 模型 微信 AIOT

"出海无界 商机无限"助力企业构建全球竞争力 深圳2025年9月9日 /美通社/ -- 2025年8月28日, 由领先商业管理媒体世界经理人携手环球资源联合主办、深圳•前海出海e站通协办的...

关键字: 解码 供应链 AI BSP

柏林2025年9月9日 /美通社/ -- 柏林当地时间9月6日,在2025德国柏林国际电子消费品展览会(International Funkausstellung...

关键字: 扫地机器人 耳机 PEN BSP

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移远通信宣布,其自研蓝牙协议栈DynaBlue率先通过蓝牙技术联盟(SIG)BQB 6.1标准认证。作为移远深耕短距离通信...

关键字: 蓝牙协议栈 移远通信 COM BSP

上海2025年9月9日 /美通社/ -- 为全面落实党中央、国务院和上海市委、市政府关于加快发展人力资源服务业的决策部署,更好发挥人力资源服务业赋能百业作用,8月29日,以"AI智领 HR智链 静候你来&quo...

关键字: 智能体 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付与一汽出行达成合作,为其自主研发的"旗驭车管"车辆运营管理平台提供全流程支付通道及技术支持。此次合作不仅提升了平台对百余家企业客户的运营管理效率...

关键字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制药(PharmaEngine, Inc.)发现的新一代PRMT5抑制剂PEP0...

关键字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶
关闭