当前位置:首页 > 模拟 > 模拟
[导读]摘要:为帮助正确理解及运用常见的消侧音电路,分别讨论了加法和减法电路实现的相位抵消法消侧音原理。几种典型电路均用到运算放大器。为直观认识每种电路的特点,估算了接收方获得信号和发送方输出信号的比值(电压比

摘要:为帮助正确理解及运用常见的消侧音电路,分别讨论了加法和减法电路实现的相位抵消法消侧音原理。几种典型电路均用到运算放大器。为直观认识每种电路的特点,估算了接收方获得信号和发送方输出信号的比值(电压比),每种电路均经TINA-TI软件仿真和实际电路验证,估算值和仿真、验证结果一致。这些消侧音原理和电路可应用在楼宇对讲、无线对讲等场合。最后,分享了一些设计和制作消侧音电路的经验。
关键词:相位抵消法;消侧音;对讲系统;运算放大器

0 引言
    楼宇、电梯、医院、车站售票窗口等场合往往需要对讲系统,不同于广播系统,对讲系统一般属于半双工系统,其音频信号有发送和接收两种。对于音频输出输入信号是模拟信号的对讲系统,音频发送和接收信号可以分别占用一条信道,也可以在同一信道上传输。实际应
用中,为了节约线材和安装方便,音频收发信号往往合用一条传输线。这时,发送信号也作用于自身的接收电路,如果不加处理,己方的喇叭就会播放出自己的声音,这个声音一旦大到一定程度,通话效果将大受影响。在使用对讲系统通话时,讲话者如果从己方受话器中听到很响的自己的声音,这种声音通常成为侧音。
    在模拟音频收发信号共用一个信道的对讲系统中,为减小侧音对通话效果的影响,所有对讲设备均需增加消侧音电路。消侧音电路一方面让音频发送信号按一定比例出现在传输线上,另一方面让本方音频接收电路获得的信号足够小,不至于说话者从己方喇叭听到自己的声音。同时,接收方的消侧音电路让传输线上的电压按一定比例出现在音频接收电路的输入端,从而接收方喇叭播放出声音。
    消侧音的方法通常有变量器法、电桥平衡法和相位抵消法。变量器法曾经在号盘式电话机中广泛应用,现今已被淘汰。电桥平衡法在按键电话机中普遍应用,相位抵消法在无线对讲机和楼宇对讲系统中比较常见。相位抵消法有多种电路形式,可以发现这些电路良莠混杂、谬误常出,因此,对相位抵消法原理及其电路形式进行系统阐述尤为必要。另外,电桥平衡法可视为相位抵消法的一个特殊形式将另文探讨。

1 用加法实现消侧音
1.1 原理
   
在图1所示的串联分压电路中,R1,R2为纯电阻,v1,v2为输入电压,vo为输出电压,据叠加定理:
   
    令vo=0,则v1R2+v2R1=0,即:
   
    特别地,当R1=R2时,v1=-v2。
    由式(1)可见,欲使vo=0,v1,v2须满足2个条件:
    (1)每个频率分量的相位相反;
    (2)每个频率分量幅度呈一定比例且比例相同。


1.2 电路形式(一)
   
对讲各方的音频输入输出电路一般都相同,图2示意了两方对讲的消侧音电路,以虚线分割。甲方R10,R11之和远大于R6,故R10,R11组成的支路可视为开路。同理,乙方R21,R22组成的支路也可视为开路。对于U1输出的交流信号而言,传输线两端的隔直电容C2,C10可视为短路,运放U3的输出端可视为交流接地,于是R6,R17组成了简单的串联关系。忽略传输线的损耗,假设U1输出为1,经R6后降为0.5。再假设U2的放大倍数为-A(图中U2的实际放大倍数为正值,但相对于U1来说是负值),根据式(1),0.5R11=A×R10。由甲乙方电路的对称性,乙方的R21=R10且R22=R11。在乙方,R17右侧获得的电压为0.5,运放U4的输出端可视为交流接地,射随器可视为开路,故射随器输入端获得的电压为:
   
    当2A远大于1时,接收方功放输入端获得的电压接近0.5。需要说明的是,如果音频传输线上并联了多个的相同设备,射随器输入端获得的电压将更小。
1.2 电路形式(二)
   
图3是文献提供的消侧音电路框图,其运用的原理与图1所述的相同。


    甲乙两方的电路仍然是对称的,R1,R4,R2与R5,R3,R6分别相等。尽管文献没有给出具体的电路参数,但根据式(1)很容易得出接收方功放获得的电压。假设U1输出为1,U2,U3的输入电阻足够大,并忽略传输线对信号的损耗,则图中b点和d点电压均为0.5。再假设U2,U3的放大倍数为-A,由式(1)知0.5A×R2=R3。这时乙方功放输入端获得的电压为:
   
    当A远大于2,接收方功放输入端获得的电压接近-1。如果音频传输线上并联了多个相同设备,功放输入端获得的电压也将更小。
1.3 电路形式(三)
   
图4所示的电路适用于低成本场合。三极管发射极和集电极的信号反相,一个三极管的作用相当于图2中的U1和U2。图中三级管的偏置电路没有画出,C1和C2将直流分量同传输线隔离开。需要特别提出的是,如果可调电阻P1足够大,从而对三极管的偏置影响足够小,可将C2去掉,可调电阻P1直接和三极管的c,e极并联。



2 用减法实现消侧音
2.1 原理
   
图5所示是用来实现两个电压vS1,vS2相减的电路,在理想运放情况下,利用“虚短”、“虚断”现象,可得输出电压:
   
    如果选取电阻值满足Rt/R1=R3/R2的关系,输出电压可简化为:
    vo=Rf/R1(vS2-vS1)     (5)
    特别地,当vS1=vS2时,vo=0。


    应当注意的是,运放的两个输入端存在共模电压,需选用共模抑制比较高的集成运放,才能保证一定的运算精度。
2.2 电路形式
   
对称的两方对讲的音频电路如图6所示,以虚线为界。


    运放U1,U2的同相端偏置电路可参考图2,此处未画出。对交流信号而言,传输线两端的电容C3,C5可视为短路,考察甲方的消侧音电路,运放U3的输出端可视为交流接地,这时R15就相当于图5中的R3。同理,对乙方的消侧音电路来说R7相当于图5中的R3。
    以甲方发送音频信号为例,设U1的输出为1,则U2的输出几乎为0,达到了消侧音的目的。忽略音频信号在传输线上的损耗,由理想运放的虚断现象可知,U4的同相端电压为0.5,这时U4与周边电阻的连接关系如图7所示,易得U4的输出为1,乙方接收到了甲方的音频信号。


    需要特别说明的是,在多方通话的场合,音频传输线上每多并一个相同设备,为满足Rf/R1=R3/R2的关系,运放的Rf均需相应调整。

3 结语
   
反相信号相加、同相信号相减,可实现消侧音功能。正因为利用了信号的加减运算,消侧音电路的音频输出信号一般不宜用变压器隔离,因为隔离变压器和运放的隔直电容一起,往往会明显改变参加运算一方的相位,消侧音效果将大打折扣。实际应用中,输入和输出运放最好加上低通或高通滤波电路,以限制输入和输出信号的带宽。图2中的R11处可用两个电阻串联,以便微调阻值。当选定一种消侧音电路,可借助仿真软件优化电路参数,以取得最合适的消侧音效果。
    对讲设备增加消侧音电路之后,除了节约一根音频传输线以外,还便于实现多方通话,只要将各方的音频信号线并联即可。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移远通信宣布,其自研蓝牙协议栈DynaBlue率先通过蓝牙技术联盟(SIG)BQB 6.1标准认证。作为移远深耕短距离通信...

关键字: 蓝牙协议栈 移远通信 COM BSP

上海2025年9月9日 /美通社/ -- 为全面落实党中央、国务院和上海市委、市政府关于加快发展人力资源服务业的决策部署,更好发挥人力资源服务业赋能百业作用,8月29日,以"AI智领 HR智链 静候你来&quo...

关键字: 智能体 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付与一汽出行达成合作,为其自主研发的"旗驭车管"车辆运营管理平台提供全流程支付通道及技术支持。此次合作不仅提升了平台对百余家企业客户的运营管理效率...

关键字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制药(PharmaEngine, Inc.)发现的新一代PRMT5抑制剂PEP0...

关键字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶

推进卓越制造,扩大产能并优化布局 苏州2025年9月5日 /美通社/ -- 耐世特汽车系统与苏州工业园区管委会正式签署备忘录,以设立耐世特亚太总部苏州智能制造项目。...

关键字: 智能制造 BSP 汽车系统 线控

慕尼黑和北京2025年9月4日 /美通社/ -- 宝马集团宣布,新世代首款量产车型BMW iX3将于9月5日全球首发,9月8日震撼亮相慕尼黑车展。中国专属版车型也将在年内与大家见面,2026年在国内投产。 宝马集团董事...

关键字: 宝马 慕尼黑 BSP 数字化

北京2025年9月4日 /美通社/ -- 在全球新一轮科技革命与产业变革的澎湃浪潮中,人工智能作为引领创新的核心驱动力,正以前所未有的深度与广度重塑各行业发展格局。体育领域深度融入科技变革浪潮,驶入数字化、智能化转型快车...

关键字: 人工智能 智能体 AI BSP

上海2025年9月2日 /美通社/ -- 近日,由 ABB、Moxa(摩莎科技)等八家企业在上海联合发起并成功举办"2025 Ethernet-APL 技术应用发展大会"。会议以"破界•融合...

关键字: ETHERNET 智能未来 BSP 工业通信
关闭