当前位置:首页 > 智能硬件 > 智能硬件
[导读]目前,针对单片机应用的专用键盘接口芯片可谓种类繁多,但大多数都应用于对功耗没有严格要求的场合,满足不了一些小巧的便携式设备(例如遥控器的低功耗、低成本要求)。TC9148是一款应用广泛的红外发码专用芯片,一般

目前,针对单片机应用的专用键盘接口芯片可谓种类繁多,但大多数都应用于对功耗没有严格要求的场合,满足不了一些小巧的便携式设备(例如遥控器的低功耗、低成本要求)。

TC9148是一款应用广泛的红外发码专用芯片,一般与红外接收芯片TC9149配合使用来构成一套完整的遥控发射、接收系统。而由于TC9148具有功耗极低且价格低廉的特点,凶而在许多要求有键盘控制的低功耗、低成本应用中可将其作为键盘接口芯片使用,并直接与微处理器连接实现复杂的键盘处理。本文采用TC9148作为键盘接口芯片,给出了基于Microchip公司的低功耗单片机PIC16F73实现的低功耗键盘接口设计方法。

1 TC9148传送波形分析

TC9148是一款功耗极低且价格低廉的红外发码专用芯片。用TC9148设计键盘接口电路的关键是对TC9148的输出信号进行解码。下面就详细地讨论一下TC9148的传送波形。

1.1 基本传送波形

TC9148的振荡频率fosc为455 kHz,传送的基本波彤是图1所示的12位串行码。其中C1~C3为用户码标识,H、S1和S2为连续/单发码标识,K1~K6为键输人标识。根据TC9148数据手册介绍,这里:a=(1/fosc)×192≈420μs。然而,通过示波器观察及后续的程序调试发现,每位码的实际位宽约为420μs,即图1中的4a才等于420μs。

1.2 载波

为了增加红外信号的发送和接收距离,一般需要50~100 mA的电流通过红外发射二极管,所以,从减少电池消耗考虑,需尽可能的减少红外发光管的导通时间。TC9148的发码信号采川占空比为1:3的载波调制波形,其载波频率为38 Hz。

图2和图3所示为用示波器观察所得的脉冲凋制后的传送波形。图2是位码“0”和“1”的波形表示。图3则是发射一个完整码的实际波形。

由于应用了载波调制,TC9148的发射码波形相对比较复杂,采用常用的定时读取高低电平的方式解码有一定的难度,且误码率也比较高。本设计考虑到载波调制部分具有电平变化的特点,因而采用PIC16F73单片机的RB端口电平变化中断来作为辅助判断。

2 键盘接口电路

本设计将TC9148作为键盘接口芯片使用,其硬件电路的设计相对比较简单,其电路如图4所示。图4中,TC9148的串行输出端TxOUT接PIC16F73的RB4脚,其它外围电路采用其典型连接方法,键盘则应根据需要做一定裁减。另外,电路调试中,有时TC9148会起振困难,因此应注意合理设置晶振电路中的电容C9和C8的值,一般的经验是:C8略小于C9。

可见,键盘接口设计的关键就是实现PIC16F73对TC9148传送码的正确解码。考虑到TC9148传送波形的复杂性,PIC16F73的接入引脚采用的是RB口的RB4,即加入了RB端口电平变化中断作为辅助判断。

3 解码算法的设计

3.1 TC9148发码起始的判断

根据TC9148的传送波形,无论“0”或“1”,起始处均为载波调制波形,这一点具有电平变化的特点,因此,开RB电平变化中断后,一旦进入该中断程序即认为开始发码。

3.2 传送波形中“0”和“1”的判断

事实上,本设计中解码的难点是对传送波形中“0”和“1”的判断。最初在考虑解码时,也曾尝试过通过精确的延时、定时程序并按照时序来读取波形,但通过大量的测试发现:TC9148数据手册上提供的波形与实际示波器上观察的波形略有出入,致使设计时无法得到精确的延时数值;另外,由于加入了载波,但载波调制部分的低电平保持时间较短,硬件无法灵敏反应,致使误码率很高。故而只能再做其它的打算。

仔细对位“0”和位“1”的波形进行分析和比较后发现:由于加入载波,在前半周期内,位“0”和位“1”的波形均会发生电平变化;而在后半周期内,只有位“1”的波形会产生电平变化,而位“0”的波形则保持高电平不变,具体波形变化如图5所示。

因此,通过适当的延时和电平变化的判断,就可以很准确的判断出位“0”和位“1”,问题也就迎刃而解了。

3.3 基本传送波形的解码

TC9148的键盘输入可以实现单键和多重按键,与之对应的有两种发射码的波形:一种是单发码波形,另一种是连续码波形。这两种波形都是基于传送的基本波形,只是加入了一定的延时和校验部分,并且单发码波形只传送一次,而连续码波形是要重复传送的,具体波形图可参考TC9148的数据手册。

这里,由于设计中的算法并不是基于波形的读取,而是直接对位“0”和位“1”波形进行判断,因此,不论是单发码波形或连续码波形,都可只读其中的基本传送波形部分即以得到正确的解码,这在很大程度上避免了干扰的影响。

图6所示是一个基本传送波形的解码判断过程图,其重复部分可以采用循环来实现。

4 程序代码

下面给出基于PIC16F73单片机的解码部分的程序代码和详细注释:

5 结束语

本文针对低功耗应用场合,采用Microchip公司的低功耗单片机PIC16F73和红外发码芯片TC9148完成了键盘接口设计,并在设计过程中实现了PIC单片机对红外发码芯片TC9148的直接解码,从而拓展TC9148芯片的应用领域,提升了产品的性价比,具有一定的创新意义。

更多计算机与外设信息请关注21ic计算机与外设频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

新竹2025年9月9日 /美通社/ -- 全球客制化存储芯片解决方案设计公司爱普科技今日宣布,其新一代PSRAM—ApSRAMTM (Attached-pSRAM)已通过客户平台验证,预计将于年底开始量产。ApSRAMT...

关键字: PSRAM 低功耗 存储芯片 MT

轮胎压力监测系统(TPMS)作为现代汽车安全的核心组件,通过实时监测胎压与温度数据,构建起全天候的轮胎健康监护网络。其算法设计需兼顾低功耗运行与高精度异常识别,尤其在直接式TPMS中,传感器需在纽扣电池供电下持续工作5年...

关键字: TPMS 低功耗

在智能家居系统中,无线传感器、控制器等设备对电源的稳定性与能效提出严苛要求。尤其在采用Zigbee协议的场景中,低功耗待机与智能唤醒机制成为延长设备续航、保障网络可靠性的核心设计要素。本文从电源架构设计、Zigbee模块...

关键字: Zigbee 低功耗

在现代快节奏的生活中,心脏健康问题日益受到人们的关注。心血管疾病已成为威胁人类健康的主要杀手之一,且呈现出年轻化的趋势。传统的心电图检测往往需要在医院进行,不仅耗时费力,而且难以实现日常的实时监测。如今,随着科技的飞速发...

关键字: 心电监测仪 低功耗 利器

在现代电子系统中,电源管理的重要性日益凸显。随着便携式设备、物联网(IoT)设备以及高性能芯片的不断发展,对电源稳压器提出了越来越高的要求。低压差线性稳压器(Low Dropout Regulator,LDO)因其能够在...

关键字: 低功耗 低压差 LDO

在当今数字化医疗与健康监测蓬勃发展的时代,生物电测量技术作为洞察人体生理状态的关键手段,正发挥着日益重要的作用。从常规的心电图(ECG)检测心脏电活动,到脑电图(EEG)捕捉大脑神经元的信号,生物电信号蕴含着丰富的人体生...

关键字: 脑电图 低功耗 前端芯片

在物联网设备与可穿戴产品向长续航、微型化演进的趋势下,STM32微控制器的超低功耗设计已成为决定产品竞争力的核心要素。通过深度优化STOP模式、RTC唤醒机制及电源管理策略,工程师可将系统待机电流从毫安级压缩至纳安级,使...

关键字: STM32 低功耗

正确理解技术详情数据表中指定的精度,明确测量需求以及避免使用需要在多个量程之间切换的仪器是关键因素。牢记这些要点将有助于您为开发项目选择合适的工具,并在测量过程中避免潜在问题,从而实现设备低功耗。

关键字: 物联网 电流精度 低功耗 测量仪表

在全球倡导绿色节能、可持续发展的时代背景下,延时继电器作为电气控制领域的关键元件,其发展方向正朝着低功耗设计与环保材料应用转变。这一转变不仅顺应了环保潮流,也为延时继电器行业带来了新的发展机遇。

关键字: 延时继电器 低功耗

随着物联网、可穿戴设备等领域的快速发展,对嵌入式系统的低功耗需求日益增长。STM32单片机作为一款性能卓越、功能丰富的微控制器,广泛应用于各种电子设备中。然而,在追求高性能的同时,如何降低其功耗成为了设计者面临的重要挑战...

关键字: STM32 低功耗
关闭