当前位置:首页 > 工业控制 > 工业控制
[导读] 制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高速度场合,这种驱动已经显露出不足。在这种情况下直线电机应运而生。直线电机直接产生直线运动,没有中间转换

 制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高速度场合,这种驱动已经显露出不足。在这种情况下直线电机应运而生。直线电机直接产生直线运动,没有中间转换环节,动力是在气隙磁场中直接产生的,可获得比传统驱动机构高几倍的定位精度和快速响应速度。

本文是在我系研制的交流永磁同步直线电机基础上进行基于矢量变换控制的驱动系统设计应用。

2. 交流永磁同步直线电机工作原理

  直线电机的工作原理上相当于沿径向展开后的旋转电机。交流永磁同步直线电机通入三相交流电流后,会在气隙中产生磁场,若不考虑端部效应,磁场在直线方向呈正弦分布。行波磁场与次级相互作用产生电磁推力,使初级和次级产生相对运动。图1所示为开发设计的交流永磁同步直线电机。
 


 

3. 永磁同步直线电机矢量控制原理

  由于矢量控制动态响应快,相比较标量控制,在很快的时间内就能达到稳态运行。经过30多年工业实践的考验、改进与提高,目前已经达到成熟阶段[3],成为交流伺服电机控制的首选方法。因此,直线电机采用了交流矢量控制驱动的方法。
 


 

  直线电机初级的三相电压(U、V、W相)构成了三相初级坐标系(a,b,c轴系),其中的三相绕组相角相差120?,即在水平方向上互差1/3极距。参照旋转电机矢量变换理论,设定两相初级坐标系(α-β轴系),由三相初级坐标系到直角坐标系转换称为Clark变换,见式(1)。

 


  从静止坐标系到旋转坐标系的变换称为Park变换,见式(2)。反之称Park逆变换。

  

 


 θ是d轴与 轴的夹角。根据旋转电机的Park变换理论和两电机结构比较。由于电机运动部分的不同,故直线电机动子相当于旋转电机定子,直线电机定子相当于旋转电机动子。所以在旋转电机中旋转坐标系固定在动子上,旋转坐标系随着电机转子一起同步旋转。在直线电机中,由运动相对性原理,动子的直线运动,可理解为定子相对于动子作反方向直线运动,因此“旋转坐标系”(实际上此坐标系是直线运动的,应称之为直线运动坐标系)则固定在定子上,和定子一起相对于动子作直线运动,如图3所示。此时,直线电机动子向右作直线运动,其定子则相对于动子向左直线运动,固定在定子上的坐标系也和定子一起相对于动子相对于动子向左运动。动子内部的行波磁场相对于动子本身是向左运动,这样站在固定在定子上的坐标系上观察此同步电机的行波磁场则是静止的。于是让d轴位于次级永磁体N极轴线上,q轴则超前d轴90?,也就是极距的1/4。θ由直线电机运动时动子所处的位置决定。

 

4.永磁同步直线电机控制系统设计

  根据直线电机工作原理,采用矢量变换设计其控制驱动系统。

  控制器采用DSP处理器,选用TI公司的TMS320F2812 DSP。它是TI公司最新推出的32位定点高速数字信号处理器,150MIPS的执行速度使得指令周期缩短至6.67ns,内置12位的AD转换器,最小转换时间为80ns[4]。功率驱动部分采用IPM模块, PWM频率最高可达20K。
 


 

  永磁同步直线电机驱动控制系统结构框图如图3所示

5.软件结构

  系统软件包括软硬件初始化程序、主程序、初始定位子程序、控制过程显示程序和中断服务子程序5个部分。系统复位后首先执行初始化程序,实现对DSP内部各功能模块工作模式的设定和初始状态的检测;然后执行主程序,开启定时中断、外部保护中断及初始定位子程序;获得动子准确位置信息后,进入运行状态,执行中断服务子程序[5]。 系统的主要功能,包括电流大小的计算、速度位置信息和矢量变换,由中断服务子程序来完成。根据系统运行原理设计其软件结构。图5为系统运行程序图:

  系统中断子程序图如图4所示:
 


 

6.结论

  本文设计的算法程序已经初步调试成功,能够实现基本运行,证明软硬件设计的正确性。图5所示为部分调试结果



  由于直线电机端部效应及外部载荷直接加载等特点,使得对直线电机控制系统稳定提出了较高要求。为提高其控制的鲁棒性,其算法还有待于继续改进。必须采取合适的控制算法和控制策略,使系统动态响应快,抗干扰能力强,稳态跟踪精度高。因此直线电机控制理论有待于进一步深入的探讨与研究。

  本文作者的创新点:分析了永磁同步直线电机与旋转电机的矢量变换理论的区别之处,并在此基础上基于TMS320F2812 DSP实现其控制系统。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭