当前位置:首页 > 工业控制 > 工业控制
[导读]研究了PWM控制技术在单相桥式逆变电路中的应用,首先详细地阐述了PWM控制技术的基本原理,简要地介绍了单相桥式逆变电路的工作原理,然后将PWM控制技术应用到单相桥式逆变电路中,最后通过仿真结果验证了理论分析的正确性。

摘要:研究了PWM控制技术在单相桥式逆变电路中的应用,首先详细地阐述了PWM控制技术的基本原理,简要地介绍了单相桥式逆变电路的工作原理,然后将PWM控制技术应用到单相桥式逆变电路中,最后通过仿真结果验证了理论分析的正确性。

1 引言

在电力电子技术发展史上,逆变电路占据非常重要的一环,而PWM控制技术在逆变电路又处于核心地位,如何将PWM控制技术应用到逆变电路当中是摆在广大科技工作者面前一大难题。针对这个问题,本文首先阐述了PWM控制技术的基本原理,然后详细地研究了单极性SPWM和双极性SPWM实现方法,最后将PWM控制技术和单相桥式逆变电路结合起来分析并应用,并通过仿真实验验证了PWM控制技术在逆变电路的成功应用。

2 PWM控制技术的基本原理及实现方法

2.1 PWM控制技术的基本原理介绍

根据信号与系统知识可知,冲量相同而形状不一样的窄脉冲加在惯性环节上时,其输出作用相同。如图1(a)、(b)和(c)所示的三个波形分别为矩形波脉冲、三角波形脉冲以及正弦波形脉冲,显然它们的形状完全不同,但是面积完全相同,如果把它们分别加在具有同一个惯性的环节上时,其输出作用完全相同。

(a)矩形波脉冲 (b)三角波脉冲 (c)正弦半波脉冲

分别将如图1所示(a)、(b)和(c)所示波形施加在同一个一阶惯性环节上,其电路图和输出电流i(t)输出分别如图2(a)和(b)所示。从2(b) 可以看出,在i(t)的上升段,i(t)的形状也稍微有点不同,但其下降段则完全相同。值得说明的是脉冲越窄,各i(t)输出波形的差异可以忽略不计。这种原理被称为面积等效原理,它是实现PWM控制技术的理论基础。

如果用一系列等幅不等宽的脉冲来代替一个正弦半波,也就是说把正弦半波分成N等份,然后被把它看成N个首尾相连的脉冲序列,而这些被平分的波形宽度完全相等,但幅值却不相等。然后用矩形脉冲代替这些被平分的N份波形,矩形脉冲同样被要求幅度相等,而宽度不相同,但是要保证它们的中点完全重合,面积与N份波形相同,这样就可以得到脉冲序列,如图3所示。根据上述分析,PWM波形和正弦半波是等效的。

2.2 单极性和双极性SPWM的实现

将输出波形作调制信号,进行调制可以得到想要的PWM波;一般都采用等腰三角波作为载波,原因在于其任一点水平宽度和高度成线性关系,而且左右对称。此外,与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。当调制信号波为正弦波时,得到的就是SPWM波。如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式,如图4所示。

与单极性PWM控制方式相对应的是双极性控制方式,如图5所示,采用双极性方式时,在Ur的半个周期内,三角波载波不再是单极性的,而是有正有负,所得的 PWM波也是有正有负。在Ur的一个周期内,输出的PWM波只有±Ud两种电平,而不像单极性控制时还有零电平,双极性SPWM控制方式仍然在调制信号和载波信号的交点时刻控制各开关器件的通断。

3 PWM控制技术在逆变电路中的应用

3.1 单相桥式逆变电路中的工作原理介绍

图6为采用全控器件IGBT作为开关的单相桥式逆变电路,设负载为阻感性负载。现在本文结合图4的所示单极性SPWM控制电路对器工作原理进行阐述。图6所示的电路VT1和VT2互补导通,同样VT3和VT4也互补导通。Uo在正半周工作时,VT1开通,VT2关断,VT3和VT4交替通断,由于是电感性负载,电流比电压滞后,所以在电压Uo正半周,电流有一段为正,一段为负,而负载电流为正区间。当VT1和VT4都导通时,Uo等于 Ud,VT4关断时,负载电流通过VT1和UD3续流,Uo=0,负载电流为负区间,io为负,实际上从VD1和VD4流过,此时负载两端电压仍有 Uo=Ud,VT4断,VT3通后,io从VT4和VD1续流,Uo=0,Uo总可得到Ud和零两种电平。同理可分析Uo在负半周时,让VT2保持导通,VT1保持关断,VT3和VT4交替通断 Uo可得到-Ud和零两种电平。

3.2 PWM控制技术在逆变电路中的应用

控制VT3和T4通断的方法既可以用图4单极性SPWM控制方式,也可以用图6所示的双极式控制方式。比如调制信号Ur为正弦波,载波 Uc在Ur的正半周为正极性的三角波,在Ur的负半周为负极性的三角波。在Ur和Uc的交点时刻控制IGBT的通断,Ur正半周,VT1保持通,VT2保持断,当Ur>Uc时使VT4通,VT2断,Uo=Ud,当UrUc时使VT3断,VT4 通,Uo=0,虚线Uof表示Uo的基波分量。实现VT3和VT4通断的区别只是在于加在其栅极的驱动电平不同而已,一个为单极性,另外一个为双极性。

4 仿真验证

为了验证PWM控制技术在单相桥式逆变电路中的应用正确性,本文给出了其仿真结果如图7和图8所示,其中图7为单极性SPWM控制桥式逆变电路的仿真波形,图7中上面波形为负载两端输出电压仿真波形,下面波形为负载输出电流仿真波形,跟图4理论分析完全一致。图8为双极性SPWM控制桥式逆变电路的仿真波形,图8中上面波形为负载两端输出电压仿真波形,下面波形为负载输出电流仿真波形,跟图5理论分析完全一致,仿真结果验证了理论分析的正确性。

5 结论

通过以上分析,将PWM控制技术与逆变电路结合起来使用,不仅能够逆变电路工作稳定可靠,更重要的是很容易改变PWM的占空比,从而实现逆变电路输出电压有效值的改变,为逆变电路在各个行业的应用奠定了基础。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为解决使用现有接装纸分离装置生产“视窗烟支”时出现的安装调整难度大、耗时长、稳定性差,烟支接装纸外观质量缺陷率高等问题,设计了一种接装纸三级分离和控制装置。通过接装纸初步分离、分离定位控制和最终定位输送装置模块化设计,且...

关键字: 视窗烟支 接装纸 分离 控制

构建了机载电源特性测试系统 , 包括硬件平台和软件平台:硬件平台用于产生电源特性测试所需激励信号 , 软件 平台实现电源特性测试架构的 自动切换和电源特性的数据采集;硬件平台由APS15000线性功放 、LVA2500线...

关键字: 电源特性测试 测试切换 数据采集 自动控制

作为业内持续专注于物联网(IoT)芯片开发的厂商,Silicon Labs(芯科科技)自2021年剥离基础设施与汽车(I&A)业务后,全力聚焦物联网领域。而随着物联网迈向全场景无缝连接与人工智能(AI)端侧赋能的新阶段,...

关键字: 芯科科技 IoT BLE AoA Sub-G AI

永磁同步电机具有高效节能 、低噪声 、高功率密度等显著优点 ,特别适用于新能源电动汽车行业 。针对城市用轻型 低速电动汽车的应用 , 分析了一款内置式永磁同步电机的设计方法及特点 , 对汽车驱动电机的基本性能及设计策略进...

关键字: 永磁同步电机 新能源汽车 有限元计算 电机设计 内置式

介绍了“W ”型锅炉的燃烧特性 ,深度调峰过程中常见的问题及风险点 。结合某电厂630 MW超临界机组在200 MW负 荷深度调峰过程中给煤机断煤引起的燃烧恶化工况 ,对燃烧恶化后的现象 、处理过程及原因进行了全面分...

关键字: “W”型锅炉 深度调峰 燃烧恶化 稳燃措施

在地铁供电系统中 ,直流牵引系统故障可能会导致地铁列车失电 ,对运营服务造成严重影响 。地铁出入场(段)线 的部分直流牵引供电设备处于露天环境 , 与正线隧道内较为封闭的环境相比 , 易因外部环境影响 ,导致设备故障 。...

关键字: 出入段线 牵引直流开关 电流变化率保护 跳闸

在现代电力系统中 , 无论是大电流 、高电压 、快速运行的电源开关系统 , 还是高速电机的驱动系统 , 电磁干扰的传 播一直是系统设计的难点 。鉴于此 ,介绍了通过控制高速开关核心模块PWM(脉宽调制)的展频方式来减少E...

关键字: 电磁干扰(EMI) 脉宽调制(PWM) 展频

水厂作为城市供水系统的重要组成部分 , 其电气设计的合理性和高效性直接关系到整个供水系统的稳定性和经 济性 。鉴于此 ,从供配电系统 、设备选型 、电缆敷设 、节能措施及智慧化平台等五个维度 , 结合现行规范与工程实践...

关键字: 水厂 电气设计 供配电系统 智慧化平台

由于负载的特殊性和运行条件的复杂性 ,海上油气平台的电气系统功率因数普遍较低 。这种低功率因数会对电力 系统造成一系列负面影响 , 包括电能损耗增加 、设备运行效率降低及对平台电力系统的冲击 。鉴于此 , 结合具体项目案...

关键字: 油气平台 静止无功发生器(SVG) 功率因数 无功补偿 改造案例

在电子制造领域,DFM(Design for Manufacturability,可制造性设计)作为连接研发与量产的桥梁,通过在设计阶段预判制造风险,已成为提升产品良率、降低成本的核心工具。以手机摄像头模组封装工艺为例,...

关键字: DFM BSOB
关闭