当前位置:首页 > 工业控制 > 工业控制
[导读]在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。

在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。

它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

在自动控制中,PID及其衍生出来的算法是应用最广的算法之一。各个做自动控制的厂家基本都有会实现这一经典算法。我们在做项目的过程中,也时常会遇到类似的需求,所以就想实现这一算法以适用于更多的应用场景。

在自动控制中,PID及其衍生出来的算法是应用最广的算法之一。各个做自动控制的厂家基本都有会实现这一经典算法。我们在做项目的过程中,也时常会遇到类似的需求,所以就想实现这一算法以适用于更多的应用场景。

1PID算法基本原理

PID算法是控制行业最经典、最简单、而又最能体现反馈控制思想的算法。对于一般的研发人员来说,设计和实现PID算法是完成自动控制系统的基本要求。这一算法虽然简单,但真正要实现好,却也需要下一定功夫。首先我们从PID算法最基本的原理开始分析和设计这一经典命题。

PID算法的执行流程是非常简单的,即利用反馈来检测偏差信号,并通过偏差信号来控制被控量。而控制器本身就是比例、积分、微分三个环节的加和。其功能框图如下:

根据上图我们考虑在某个特定的时刻t,此时输入量为rin(t),输出量为rout(t),于是偏差就可计算为err(t)=rin(t)-rout(t)。于是PID的基本控制规律就可以表示为如下公式:

其中Kp为比例带,TI为积分时间,TD为微分时间。PID控制的基本原理就是如此。

2PID算法的离散化

上一节简单介绍了PID算法的基本原理,但要在计算机上实现就必须将其离散化,接下来我们就说一说PID算法的离散化问题。在实现离散化之前,我们需要对比例、积分、微分的特性做一个简单的说明。

比例就是用来对系统的偏差进行反应,所以只要存在偏差,比例就会起作用。积分主要是用来消除静差,所谓静差就是指系统稳定后输入输出之间依然存在的差值,而积分就是通过偏差的累计来抵消系统的静差。而微分则是对偏差的变化趋势做出反应,根据偏差的变化趋势实现超前调节,提高反应速度。

在实现离散前,我们假设系统采样周期为T。假设我们检查第K个采样周期,很显然系统进行第K次采样。此时的偏差可以表示为err(K)=rin(K)-rout(K),那么积分就可以表示为:err(K)+ err(K+1)+┈┈,而微分就可以表示为:(err(K)- err(K-1))/T。于是我们可以将第K次采样时,PID算法的离线形式表示为:

也可以记为:

这就是所谓的位置型PID算法的离散描述公式。我们知道还有一个增量型PID算法,那么接下来我们推到一下增量型PID算法的公式。上面的公式描述了第k个采样周期的结果,那么前一时刻也就是k-1个采样周期就不难表示为:

那么我们再来说第K个采样周期的增量,很显然就是U(k)-U(k-1)。于是我们用第k个采样周期公式减去第k-1个采样周期的公式,就得到了增量型PID算法的表示公式:

当然,增量型PID必须记得一点,就是在记住U(k)=U(k-1)+∆U(k)。

3PID控制器的基本实现

完成了离散化后,我们就可以来实现它了。已经用离散化的数据公式表示出来后,再进型计算机编程已经不是问题了。接下来我们就使用C语言分别针对位置型公式和增量型公式来具体实现。

1)位置型PID的简单实现

位置型PID的实现就是以前面的位置型公式为基础。这一节我们只是完成最简单的实现,也就是将前面的离散位置型PID公式的计算机语言化。

首先定义PID对象的结构体:

 
 1 /*定义结构体和公用体*/
 2 
 3 typedef struct
 4 
 5 {  6 
 7   float setpoint;       //设定值
 8 
 9   float proportiongain;     //比例系数
10 
11   float integralgain;      //积分系数
12 
13   float derivativegain;    //微分系数
14 
15   float lasterror;     //前一拍偏差
16 
17   float result; //输出值
18 
19   float integral;//积分值
20 
21 }PID;
 

 

接下来实现PID控制器:

 
 1 void PIDRegulation(PID *vPID, float processValue)  2 
 3 {  4 
 5   float thisError;  6 
 7   thisError=vPID->setpoint-processValue;  8 
 9   vPID->integral+=thisError; 10 
11   vPID->result=vPID->proportiongain*thisError+vPID->integralgain*vPID->integral+vPID->derivativegain*(thisError-vPID->lasterror); 12 
13   vPID->lasterror=thisError; 14 
15 }
 

 

这就实现了一个最简单的位置型PID控制器,当然没有考虑任何干扰条件,仅仅只是对数学公式的计算机语言化。

2)增量型PID的简单实现

增量型PID的实现就是以前面的增量型公式为基础。这一节我们只是完成最简单的实现,也就是将前面的离散增量型PID公式的计算机语言化。

首先定义PID对象的结构体:

 
 1 /*定义结构体和公用体*/
 2 
 3 typedef struct
 4 
 5 {  6 
 7   float setpoint;       //设定值
 8 
 9   float proportiongain;     //比例系数
10 
11   float integralgain;      //积分系数
12 
13   float derivativegain;    //微分系数
14 
15   float lasterror;     //前一拍偏差
16 
17   float preerror;     //前两拍偏差
18 
19   float deadband;     //死区
20 
21   float result; //输出值
22 
23 }PID;
 

接下来实现PID控制器:

 
void PIDRegulation(PID *vPID, float processValue)  {    float thisError;    float increment;    float pError,dError,iError;       thisError=vPID->setpoint-processValue; //得到偏差值
   pError=thisError-vPID->lasterror;    iError=thisError;    dError=thisError-2*(vPID->lasterror)+vPID->preerror;    increment=vPID->proportiongain*pError+vPID->integralgain*iError+vPID->derivativegain*dError;   //增量计算
      vPID->preerror=vPID->lasterror;  //存放偏差用于下次运算
   vPID->lasterror=thisError;    vPID->result+=increment;  }
 

这就实现了一个最简单的增量型PID控制器,也没有考虑任何的干扰条件,仅仅只是对数学公式的计算机语言化。

4、基本特点

 

前面讲述并且实现了PID控制器,包括位置型PID控制器和增量型PID控制器。界限来我们对这两种类型的控制器的特点作一个简单的描述。

位置型PID控制器的基本特点:

位置型PID控制的输出与整个过去的状态有关,用到了偏差的累加值,容易产生累积偏差。

位置型PID适用于执行机构不带积分部件的对象。

位置型的输出直接对应对象的输出,对系统的影响比较大。

增量型PID控制器的基本特点:

增量型PID算法不需要做累加,控制量增量的确定仅与最近几次偏差值有关,计算偏差的影响较小。

增量型PID算法得出的是控制量的增量,对系统的影响相对较小。

采用增量型PID算法易于实现手动到自动的无扰动切换。

这篇就写到这里。要想直观地体验PID的控制作用,需要一个具体的东西来调试。如果感觉文章还不错欢迎大家收藏转发。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

基于城市中私人自行车和共享单车数量持续增长 、城市中可利用的土地面积急剧减少以及乱停乱放等现象 , 提出 了 一种地下圆塔型 自行车 自动存取立体车库设计方案 , 该立体车库核心结构包括升降机构 、旋转机构及抓取机构等...

关键字: 共享单车车库 结构设计 三维建模

由于传统动态激光打码方式编码容易跑偏 ,无法在烟包输送过程中进行准确打码 , 于是基于ZB421包装机设计了 一 种烟包商标纸静态激光打码装置 ,该装置由第一输送通道 、翻包机构 、烟包顶升输出机构 、烟包提升通道 、激...

关键字: 静态激光打码 顶升输出

以材料力学、弹性力学理论为依据 , 以试验结果为分析基础 ,根据GB/T 3098. 2—2015《紧固件机械性能 螺母》标准 规定内螺纹高度(螺母厚度)H≥0. 8D以及螺纹断裂形貌特征 ,对螺纹悬臂梁假设进行探讨...

关键字: 螺纹牙 悬臂梁 环形受剪

为建立考虑碳排放最优的小区广义负荷分析模型 , 实现负荷节能减排 ,对居民常用家用电器的负荷可调节潜力进 行了分析建模 。研究了电动汽车与储能系统有序充放电的响应模型 ,充分考虑用户的调节意愿 ,对电动汽车及储能的调节特...

关键字: 居民用电 广义负荷 电动汽车

现代电力电子技术推动了电源技术尤其是开关电源技术的飞速发展 ,而 日益精密的电子设备则对其供电电源提出 了更高的要求。现介绍一种基于LTC3721-1的升压型推挽变换器 ,其可将77~137. 5 V范围内的直流电源升压...

关键字: 升压电路 推挽变换器 LTspice仿真

高电压小电流往往应用于诸如电力系统设备的耐压测试和稀有气体的击穿场景 ,基于此 ,设计了一款高压电源 ,该 电源由整流模块、高频变压器和倍压单元级联 ,从而减小了高压电源的体积和工艺难度。该电源可以实现最高电压10 k...

关键字: 高压电源 倍压电路 恒压输出

随着我国经济社会的不断发展 ,污水处理已经成为城市发展中的一大问题。现从自动化控制的角度 ,分析污水处理 的实际需求 ,通过自动化技术 ,解决了污水处理过程中可视化程度低、人员效率低、费用高等问题。

关键字: 污水处理 自动化 PLC

针对潜油电泵谐波故障问题 ,调研统计了西北油田5口潜油电泵井运行过程中谐波情况 , 发现谐波变化是导致电缆 绝缘老化击穿的主要原因。针对电机启动过程 ,分析作用于定子绕组的多种电压变化情况 ,设计适用于ICM系统的RLC...

关键字: 潜油电泵 电压谐波 RLC滤波器

当前 ,海油工程承揽陆地总包项目越来越多 ,从海上石油平台设计扩展到陆地项目设计;供电形式由孤岛电站转变 为双国家电网供电 ,供电方式改变;控制方式随之改变 , 电气远程操作、智能控制等内容增多 , 电气设备自动化程度提...

关键字: 多功能表 智能马达保护器 智能线路保护器

电压调节器在负载瞬态期间保持其输出电压恒定的能力为负载瞬态响应。只要负载电流变化缓慢,很容易保持输出电压恒定。但 是当负载电流“阶跃”变化足够快时,输出电压也会变化。

关键字: 瞬态负载 电力系统
关闭
关闭