当前位置:首页 > EDA > 电子设计自动化
[导读]为达到IRIG-B码与时间信号输入、输出的精确同步,采用现代化靶场的IRIG-B码编码和解码的原理,从工程的角度出发,提出了使用现场可编程门阵列(FPGA)来实现IRIG-B码编码和解码的设计方案和体系结构,设计中会涉及到几个不同的时钟频率,FPGA对时钟的同步性具有灵活性、效率高、且功耗低。抗干扰性好的特点。结果表明,FPGA能够确保为从设备提供同源的时钟基准,使时钟与信号的延迟控制在200 ns以内,从而得到了IRIG-B码与时间精确同步的效果。

IRIG (Inter Range Instrumentation Group)起源于军队靶场的时间同步,靶场中的时间系统为卫星或航天器发射、常规武器试验、测控系统提供标准时间。IBIG-B时间码(简称B码)就是由IRIG所属的TCG(Telecommunication Group)制订的一种串行时间码,被广泛应用于时间信息传输系统中。在实际的应用中,根据距离B码发生器的远近及不同时间精度的要求,B码在实际传输中采用了两种码型AC码(交流码)和DC码(直流码)。当传输距离比较远时采用AC码,当传输距离近时则采用DC码。在本文中只涉及DC码。
    FPGA为时码技术、时统设备的研制与开发注入了新的生机,为整个系统内的从设备分配相干的工作时钟,从而确保从设备具有同源相干的时钟基准。系统时钟送出时间信号,FPGA对接收到的时间信号进行编制,并且生成与GPS输出信号1 pps精确同步的B码信号。而解码系统是FPGA对B码格式信号进行解调,产生出所需的绝对时间和各种控制信号,提供给测量设备。对时统设备进行高度集成,实现时统设备大规模、高速度、低成本、低开发费用、设计周期短、电路简单、易于调试和可靠性高的目标,是时统设备发展的必然趋势。

1 IRIG-B码格式与原理
    IRIG-B码的时帧周期是1 s,包含100个码元,每个码元周期为10ms,即B码的码元速率为100 pps。B码有3种码元,位置识别标志P,二进制“1”和“0”,脉宽分别为8ms、5ms和2 ms。位置识别标志P0的前沿在帧参考点前一个索引计数间隔处,以后每10个码元有一个位置识别标志,分别为P1、P2、……、p9、P0,PR为帧参考点。脉冲信号如图1所示。


    一个时间格式帧从帧参考标志开始,由相邻两个帧参考标志之间的码元组成,每个时帧的准时为该时帧参考标志的前沿。如果连续出现两个8 ms的位置识别标志,则该时帧的开始是位于第2个8ms的位置识别标志前沿。
    IRIG-B码中第1个字段(PR~P1)传送的是秒信息,第2个字段(P1~P2)传送的是分信息,第3个字段(P2~P3)传送的是时信息,第4、5个字段(P3~P5)传送的是天数信息,即从1月1日开始计算的年积日,所以在第5个字段结束后时间信号已经解析并保存在寄存器中。另外,在第8个字和第10个字中分别有3位表示上站和分站的特标控制码元。不仅包含丰富的时间信息,也包含必要的控制信息和监测信息,方便后端用户进行使用。
    FPGA对B码的编码和解码时根据其格式和原理使用计数器和状态机来实现,其中会涉及到多个时钟信号,这些时钟信号都是由FPGA外部晶振40 MHz的时钟分频而来。编码时钟为5 MHz;解码的时钟有10 kHz、10 MHz,同时会输出时间信号,即天、时、分、秒信号。

2 IRIG-B码编码
   
时间模块由CPU进行处理,提取系统的时间信号,即秒信号sec_bcd[7..0],分信号min_bcd[7..0],时信号hour_bcd[6..0],天信号day_bcd[10..0],为FPGA的输入信号,这些输入信号都是并行信号,并且是BCD码。GPS模块为编码系统提供1 pps信号上升沿,即秒同步信号,也作为FPGA的输入信号。IRIG-B码编码的寄存器传输级(RTL)视图如图2所示。


    图2中,FPGA对IRIG-B码的编码主要由两个模块构成,一个为时钟分频模块,另一个为数据处理模块。系统的晶振时钟为40 MHz,通过分频,采用5 MHz的时钟,所以此处的误差最大为200ns。当GPS产生1个pps_in信号后,时间信号同时进入FPGA。为了产生的IRIG-B码和GPS产生的pps_in信号精确同步,所以IRIG-B码的准时位置应对准GPS模块发出的1 pps信号上升沿。B码编码的状态机流程图如图3所示。


    FPGA完成这个时刻的B码编码后,会立即不断地搜索下一个pps_in的上升沿,GPS模块每秒都会触发pps_in的上升沿,一旦发现pps_in上升沿,马上进入下一秒的编码。这样编程的好处是B码大致上可以与1 pps同步,延迟少且方便测试。FPGA对IRIG-B码秒信号的编码仿真波形如图4所示。


    如上图所示,第1行信号是40 MHz的晶振时钟;第2行信号是输入信号pps_in;第3行信号是复位信号,低电平有效;第4行信号是分频后的时钟信号5 MHz;第5行是输入秒信号,此时秒信号sec bcd[7..0]为8位二进制数10001000;最后一行信号是B码的编码信号。当pps_in上升沿到来时,FPGA对B码在5 MHz时钟的上升沿处立即产生高电平,首先是B码输出位置识别标志Pr(高电平8 ms,低电平2 ms),接着8位二进制的秒信号从低位至高位输出,实现计数器计数编码,放大波形可以知道,此时B码与pps_in有100 ns的滞后,100ns的延迟对时序同步影响很小,可以忽略不计。然后FPGA根据状态机的状态运行,直到下一个pps_in上升沿来临。

3 IRIG-B码解码
   
解码部分的设计采用两个时钟来处理,晶振的时钟为40 MHz,通过分频,可以得到一个是10 kHz的时钟,和一个10 MHz的时钟。先采用10 kHz的时钟,当连续监测到2个脉宽为8 ms的位置标示信号时,启动1个计时器,当计时器计时到990 ms时,产生1个使能信号EN,这个信号是传递给高频时钟的监测使能信号。接着计时器清零,等待下一次监测到连续2个脉宽为8 ms的信号出现时,计时器重新开始计时。
    如果只采用高频时钟的话,要监测2个脉宽为8 ms的信号与计时将会非常浪费逻辑资源。所以在前一部分的监测与计时用低频时钟进行;在准时对应的上升沿来临前2 ms为高频时钟部分提供1个使能信号;高频时钟处理部分接收到此使能信号EN后再监测B码的PR的上升沿,当监测到PR为高电平后,发出1个脉冲1 pps。经过这样的处理,就能精确的提取出1 pps信号以及与1 pps精确同步的10 MHz脉冲信号。1 pps对时信号的提取如图5所示。


    当检测到P5时,时间信号已经检测出来,这些时间信号都放在相应的寄存器(都是BCD码的并行信号)中,当有使能信号EN时,此时将已经检测出的时间信号加1 s,并在输出1 pps信号的同时输出时间信号,这样就保证了时间的准确性,也是用10 MHz的时钟同步,然后将时间信号在监测到2个脉宽为8 ms的位置标示信号时清零。FPGA对IRIG-B码的解码仿真如图6所示。


    如上图,当第3行的信号使能信号EN触发1个上升电平时,时间信号会在此时加上1 s。原先解码出来的时间信号秒、分、时、天信号为sec_out[7..0]、min_out[7..0]、hour_out[6..0]、day_out [10..0],加1 s后的时间信号放在寄存器sec_final[7..0]、min_final[7..0]、hour_final[6..0]、day_final[10..0]中,已经将它们化为十进制数,根据B码的格式,它们的第4位均为无效信号,即sec_out[4]、min_ out[4]、hour_out[4]、day_out[4]、sec_final[4]、min_final[4]、hour_final[4]、day_final[4]都是无效信号。
    当使能信号EN有效时,即在FPGA处理时间信号加1 s的过程中,当原先的秒信号sec_out寄存器为59 s时,加1 s后,输出的sec_final寄存器使其秒清零,并且在分信号寄存器加一。同理适用于分、时、天信号,它们都有一个上限,分信号的上限同样是59时信号的上限是23,而天信号的上限是365或366,需要进行判断后得出,一旦超过了各自信号的上限,输出寄存器就会自动清零,同时进位加一。
    由图6可以知道,寄存器sec_out的值为十六进制数45,使能信号EN有效后,即加上1 s后,sec_final的值为十六进制数46,因为其第4位无效,所以秒时间为26,最后解码出来的时间是145天11时41分26秒。这些时间信号存在FPGA的寄存器中,当1 pps输出时,它们会随10 MHz的时钟频率同步输出到外部总线上,外部总线接受到时间信号实现时间同步,去校准从设备的实时时间,实现了FPGA对IRIG-B的解码。

4 结论
   
随着通信技术和通信媒体的发展,如何解决时统信号在不同媒体中的传输,对靶场时间统一系统提出了更高的要求。
    本设计中用到Cyclone的EP1C6Q240C8芯片,并且使用modelsim实现功能和时序仿真。实践证明,通过FPGA完成了对IRIG-B码的编、解码设计,能够实现与系统时钟信号的精确同步,当GPS送入pps_in信号时,FPGA进行编码,输出的IRIG-B码暂时保存在FPGA的存储器中,当需要为外部设备提供精确的对时时钟时,FPGA进行解码操作,输出同步脉冲信号1pps和时间信号,从而去校准从设备的实时时间,使设备具有精度高的同步的时钟基准,获得精确且同步的控制效果,便于对从设备进行远程管理和监测。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

北京2023年9月21日 /美通社/ -- 近日,由开放数据中心委员会(ODCC)主办的2023“开放数据中心大会”在北京国际会议中心举行。今年是ODCC成立10周年,大会汇集了数据中心产业链上下游企业、科研机构、专家学...

关键字: 数据中心 TI PEN DC

(全球TMT2023年9月1日讯)8月30日,中国移动第四届科技周暨战略性新兴产业共创发展大会在北京举行。会上,中国移动携手爱立信等产业链十余家合作伙伴发布5G轻量化技术RedCap“1+5+5”创新示范之城。RedC...

关键字: 中国移动 爱立信 DC 终端

推动5G高质量发展再上新台阶 北京2023年9月1日 /美通社/ -- 8月30日,中国移动第四届科技周暨战略性新兴产业共创发展大会在北京举行。会上,中国移动深化落实工业和信息化部关于推进5G RedCap技术创新发展...

关键字: 中国移动 爱立信 DC 测试

(全球TMT2023年8月18日讯)近期,爱立信宣布推出全新的RedCap解决方案,并以此为契机,与芯片合作伙伴联发科技合作,在频分双工(FDD)和时分双工(TDD)频段上进行RedCap数据传输和5G语音通话测试,速...

关键字: 爱立信 联发科技 DC 测试

北京2023年8月18日 /美通社/ -- 近期,爱立信宣布推出全新的RedCap解决方案,并以此为契机,与芯片合作伙伴联发科技合作,在频分双工(FDD)和时分双工(TDD)频段上进行RedCap数据传输和5G语音通话测...

关键字: 爱立信 组网 联发科技 DC

-数字合作组织(DCO)发布《弥合鸿沟报告》以强调国际合作对确保所有人享有数字荣景的重要性 瑞士达沃斯2023年1月19日 /美通社/ -- 数字合作组织(DCO)今天在达...

关键字: 数字经济 DC BSP PS

在微型计算机中,所有信息(如数值、符号和图像等)均以二进制形式存储、传输和计算。由于二进制数冗长、不方便读写和辨认,因此,现代微型计算机也支持编程时使用书写长度更短的十六进制数和十进制数,同时也为各种非数值信息提供了相应...

关键字: 微型计算机 数制 编码

上海2023年1月13日 /美通社/ -- 岁月不居,时节如流。回望2022,Brother深耕中国市场,坚持科技创新,优秀的产品不仅获得了广大用户的支持,也赢得了许多媒体的...

关键字: DC MFC ADS 扫描仪

巴林麦纳麦2023年1月12日 /美通社/ -- 巴林花旗银行庆祝其全球技术中心成立一周年,该中心有望在十年内雇用1000名巴林编码员。目前,该中心由110名巴林员工组成,其中91名巴林员工已经开始在花旗银行Seef办事...

关键字: 编码 TI AI ST

美国罗克维尔和中国苏州2023年1月5日 /美通社/ -- 信达生物制药集团(香港联交所股票代码:01801),一家致力于研发、生产和销售肿瘤、自免、代谢、眼科等重大疾病领域创新药物的生物制药公司,宣布IBI351(GF...

关键字: 控制 CD DC IO
关闭
关闭