当前位置:首页 > 工业控制 > 电子设计自动化
[导读]将覆铜板加工制作出有印制电路图形、各导通孔、装配孔后,进行各种元器件装配。经装配后,为使元器件达到与PCB各线路的连结,要进行轩焊加工。钎焊加工分为三种方式:波峰焊接、再流焊接及手工焊接。插孔安装的元器件

将覆铜板加工制作出有印制电路图形、各导通孔、装配孔后,进行各种元器件装配。经装配后,为使元器件达到与PCB各线路的连结,要进行轩焊加工。钎焊加工分为三种方式:波峰焊接、再流焊接及手工焊接。插孔安装的元器件的轩焊连接一般采用波峰焊接;表面安装元器件的钎焊连接一般采用再流焊接;个别器件、部件由于安装工艺需要以及个别修补焊接,都采用单独的手工(电铬铁)焊接。

一、覆铜板的耐焊性

覆铜板作为PCB的基板材料,在钎焊时,瞬间遇到高温物质的接触,因而轩焊加工是对覆铜板"热冲击"的重要形式,是对覆铜板的耐热性的一个考验。覆铜板在热冲击中保证其产品质量,是考核覆铜板的耐热性能的重要方面。同时,覆铜板在轩焊时可靠性,还与它本身的拉脱强度、高温态下剥离强度、耐湿热性等性能指标有关。对覆铜板钎焊加工要求,除有常规的耐浸焊性项目外,近年来,为了提高覆铜板在轩焊方面的可靠性,还增添一些应用性能方面测定、考核项目。如吸湿耐热性试验(处理3 h ,再作260℃的浸焊试验)、吸湿再流焊试验(在30℃,相对湿度70%下放置规定时间,作再流焊试验)等。覆铜板生产厂在覆铜板产品出厂前,应按标准作严格的耐浸焊性(又称热冲击起泡)试验。印制电路板厂家在覆铜板进厂后,也应及时地检测此项目。同时在一种PCB 样品制出后,应小批量地模拟波峰焊条件进行检测该性能。在确定该种基板在耐浸焊性方面达到用户要求之后,才能大批量生产该品种的PCB,送交整机厂。

覆铜板的耐浸焊性测定方法,我国国际(GBIT 4722-92) 、美国IPC 标准( IPC-410 1)、日本JIS 标准(JIS- C- 6481-1996) ,是基本相同的。主要要求是:

①仲裁测定的方法是"浮焊法" (样品飘浮在锡焊表面);

②试样尺寸为25 mm X 25 mm;

③测温点若用水银温度计,是指水银头尾部平行位置在焊锡中的位置为(25 ± 1) mm;IPC 标准为25.4 mm;

④焊锡浴深度不小于40 mm。

应该注意的是:测温位置对正确、真实地反映一种板的耐浸焊性水平,有着十分重要的影响。一般焊锡加热热源在锡浴槽的底部。在测温点离焊锡液面距离越大(越深)焊锡液的温度与所测定的温度偏差就越大。这时,液面温度就比所测定温度越低,采用试样浮焊法测定的耐浸焊性的板起泡的时间就会越长。

二、波峰焊加工

波峰焊加工中,焊接的温度实际上是焊锡的温度,此温度与锡焊的种类有关。焊接温度一般应控制在250 'c以下。焊接温度过低影响焊接的质量。焊接温度增高,浸焊的时间相对显著的缩短。焊接温度过高,会造成线路(铜筒)或基板起泡、分层、板的翘曲严重。因此,对焊接温度要严格控制。

三、再流焊加工

一般再流焊的温度略低于波峰焊接温度。再流焊温度的设定,与以下几方面有关:

①再流焊的设备种类;

②线速度等的设定条件;

③基板材料的种类、板厚;

④ PCB的尺寸等。

再流焊设定温度与PCB表面温度是有所差别。而在相同的再流焊设定温度下,由于基板材料类型和厚度的不同,其PCB表面温度也有所不同(见图1和图2)。



再流焊过程中,发生铜箔鼓胀(起泡)的基板表面温度的耐热界限,会随着PCB的预热温度以及有无吸湿而改变。从图3可以看出,当对PCB 的预热温度(基板的表面温度)越低,发生鼓胀问题的基板表面温度耐热界限也越低。在再流焊设定的温度、再流焊预热的温度恒定条件下,由于基板吸湿,表面温度下降。


四、手工焊加工

在修补焊接或对特殊元器件进行单独的手工焊接时,对电铬铁的表面温度,纸基覆铜板要求在260℃以下,玻纤布基覆铜板要求在300℃以下。而且尽量缩短焊接时间,一般要求;纸基板3s以下,玻纤布基板为5s以下。



来源:1次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海浦东新区举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先...

关键字: PCB AI 数字化

在PCB制造过程中,孔无铜现象作为致命性缺陷之一,直接导致电气连接失效和产品报废。该问题涉及钻孔、化学处理、电镀等全流程,其成因复杂且相互交织。本文将从工艺机理、材料特性及设备控制三个维度,系统解析孔无铜的根源并提出解决...

关键字: PCB 孔无铜

在电子制造领域,PCB孔铜断裂是导致电路失效的典型问题,其隐蔽性与破坏性常引发批量性质量事故。本文结合实际案例与失效分析数据,系统梳理孔铜断裂的五大核心原因,为行业提供可落地的解决方案。

关键字: PCB 孔铜断裂

在电子制造领域,喷锡板(HASL,Hot Air Solder Levelling)因成本低廉、工艺成熟,仍占据中低端PCB市场30%以上的份额。然而,随着无铅化趋势推进,HASL工艺的拒焊(Non-Wetting)与退...

关键字: PCB 喷锡板 HASL

在PCB制造过程中,阻焊油墨作为关键功能层,其质量直接影响产品可靠性。然而,油墨气泡、脱落、显影不净等异常问题长期困扰行业,尤其在5G通信、汽车电子等高可靠性领域,阻焊缺陷导致的失效占比高达15%-20%。本文结合典型失...

关键字: PCB 阻焊油墨

在5G通信、新能源汽车、工业控制等高功率密度应用场景中,传统有机基板已难以满足散热与可靠性需求。陶瓷基板凭借其高热导率、低热膨胀系数及优异化学稳定性,成为功率器件封装的核心材料。本文从PCB设计规范与陶瓷基板导入标准两大...

关键字: PCB 陶瓷基板

在电子制造领域,PCB(印刷电路板)作为核心组件,其质量直接影响整机性能与可靠性。然而,受材料、工艺、环境等多重因素影响,PCB生产过程中常出现短路、开路、焊接不良等缺陷。本文基于行业实践与失效分析案例,系统梳理PCB常...

关键字: PCB 印刷电路板

在PCB(印制电路板)制造过程中,感光阻焊油墨作为保护电路、防止焊接短路的关键材料,其性能稳定性直接影响产品良率与可靠性。然而,受工艺参数、材料特性及环境因素影响,油墨异常现象频发。本文聚焦显影不净、黄变、附着力不足等典...

关键字: PCB 感光阻焊油墨 印制电路板

在电子制造领域,印刷电路板(PCB)的表面处理工艺直接影响其可靠性、信号完整性和使用寿命。其中,化学镀镍浸金(ENIG,俗称“镀金”)与有机保焊剂(OSP)是两种主流工艺,但它们在失效模式、应用场景及成本效益上存在显著差...

关键字: PCB OSP工艺

在PCB设计的宏伟蓝图中,布局与布线规则犹如精密乐章中的指挥棒,是铸就电路板卓越性能、坚不可摧的可靠性及经济高效的制造成本的灵魂所在。恰如一位巧手的园艺师,合理的布局艺术性地编排着每一寸空间,既削减了布线交织的繁复迷宫,...

关键字: PCB 电路板
关闭