当前位置:首页 > 工业控制 > 电子设计自动化
[导读] 标准小信号模型 将Rss视为电流源,输出电阻无穷大,平衡状态下的小信号差动增益Av=gmRd,单边输出增益减半。尾流源让共模电平对偏置电流的影响尽可能的小。理想差分放大器共模增益为零,共模抑制比无穷大。 一

 

 

 

标准小信号模型

将Rss视为电流源,输出电阻无穷大,平衡状态下的小信号差动增益Av=gmRd,单边输出增益减半。尾流源让共模电平对偏置电流的影响尽可能的小。理想差分放大器共模增益为零,共模抑制比无穷大。

一、共模输入变化引起输出的变化

电路对称

Rd1=Rd2=Rd

Vin1=Vin2

gm1=gm2=gm, Vgs1=Vgs2=Vgs

Vin1=Vin2=Vin=Vgs+2gmVgsRss

Vx=Vy=Vout=-gmVgsRd

Avc=Vout/Vin=(-gm)Rd/(1+2gmRss)

仅负载失配

Rd1¹Rd2

Vin1=Vin2=Vin

Vgs1=Vgs2=Vgs

beta1=beat2=beta

gm=beta*(Vgs-Vth)

gm1=gm2=gm

Vin=Vgs+2gmVgsRss

Vx=-gmVgsRd1

Vy=-gmVgsRd2

Vx-Vy=-gmVgs(Rd1-Rd2)

Avc=(Vx-Vy)/Vin=(-gm)(Rd1-Rd2)/(1+2gmRss)

仅晶体管失配

beta1¹beta2

gm1¹gm2

Vgs1=Vgs2=Vgs

Rd1=Rd2=Rd

Vin1=Vin2=Vin

Vin=Vgs+(gm1+gm2)VgsRss

Vx=-gm1VgsRd

Vy=-gm2VgsRd

Vx-Vy=-VgsRd(gm1-gm2)

Avc=Vx-Vy/Vin=-Rd(gm1-gm2)/[1+(gm1+gm2)Rss]

摘录自(1):

1、共模扰动频率的增加与尾流源并联的电容会使电流产生很大的变化(即使尾流源输出阻抗很大,在高频时也会变得很严重)

2、电路不对称既来自负载电阻,也来自输入晶体管。通常后者产生的失配要大得多。

由i=q/t, q=cv, f=1/t 得到i=cvf,所以尾流部分的寄生电容与输入频率会影响到尾流源,进而影响到整个差动电路的性能。

 

C=Eox * Area / Tox, 很容易看出面积越大电容也越大。 以W/L = 100 / 1 的晶体管为例,画成finger=1时,diff_area_f1=100 * (1.5*2 + 1) = 400, all_area_f1=400 + (0.5*4*2) = 404;当finger =2 时,diff_area_f2 = 50 * (1.5*3+1*2) = 325, all_area_f2=325 + (0.5*6.5*2) = 331.5。每次减小重合部分的面积。设MOS宽度为W, 重合部分宽度为 ds,channel长度为g,gate出diff为cap,finger 数目为n,有(W/n+2*cap)(n*ds+ds+n*g)>=(W+2*cap)(2*ds+g),得出

当n>=W*ds/[2*cap*(g+ds)]时,finger=n的整体面积大于finger=1的面积。

如果ds=x * cap, g=y *cap 则

n = [W/(2*cap)] *[x / (x+y)] ,finger=n

如果 y=z*x,其中z=g/d,则

n=W/[2*(1+z)*cap],将(1+z)*cap作为一个整体k,则

n=(W/2)*(1/k),k=(1+g/ds)*cap

上式可知k越小,n越大,也就是k越小画成多个finger的形式越合算。更直观讲就是栅宽度过大于源漏极的宽度,或者栅超出有源区很大值时,画成finger态就不太经济了。以图例的值计算结果n=60,当然拆分来画,还是要是电路的性能作为最终的依据。

这里建议取n为偶数根source端在两边,drain端在中间,注意(以图为例)水平宽度与垂直高度相对比例。

尾流源器件目的是提供稳定的电流,其实可以是镜像电流源的一部分,所以画法已经在上次讨论过了。不过考虑与另一晶体管相距较远,应以metal 作为连线。

 

晶体管失配会造成很大的影响,为保持晶体管的匹配通常的做法有,中心对称和质心对称(交叉对称)法,这些可以运用在制程偏差很大的项目中。在先进的工艺里,这方面的所占的比重在逐步下降,甚至可以忽略,在种情况下的匹配就是将晶体管尽量靠近,比如共用。

二、差模输入变化引起输出的变化

电路对称:

Rd1=Rd2=Rd

Vgs1=Vgs2=Vgs

gm1=gm2=gm

Vx=-Vy

Vx-Vy=2Vx

Vx=-gmVgsRd

Vin1=-Vin2

Vin1-Vin2=2Vin1

Vin1=Vgs+2gmVgsRss

Avd=(Vx-Vy)/(Vin1-Vin2)=Vx/Vin1=(-gm)Rd/(1+2gmRss)

仅负载失配

Rd1¹Rd2

Vgs1=Vgs2=Vgs

gm1=gm2=gm

Vx=-gmVgsRd1

Vy=gmVgsRd2

Vx-Vy=-gmVgs(Rd1+Rd2)

Vin1=-Vin2

Vin1-Vin2=2Vin1

Vin1=Vgs+2gmVgsRss

Avd=(Vx-Vy)/2Vin=(-gm)[(Rd1+Rd2)/2]/(1+2gmRss)

仅晶体管失配

beta1¹beta2

gm1¹gm2

Vgs1¹Vgs2

Vin1=-Vin2

Vin1-Vin2=2Vin1

Vin1-Vgs1=Vin2-Vgs2

2Vin1=Vgs1-Vgs2

Vin1=Vgs1+(gm1Vgs1+gm2Vgs2)Rss

Vin2=Vgs2+(gm1Vgs1+gm2Vgs2)Rss

Vin1=-Vin2

Vgs2=-Vgs1(1+2gm1Rss)/(1+2gm2Rss)

Vx=-gm1Vgs1Rd

Vy=-gm2Vgs2Rd

Vx-Vy=-Vgs1Rd(gm1+gm2+4gm1gm2Rss)/(1+2gm2Rss)

2Vin1=2Vgs1(1+gm1Rss+gm2Rss)/(1+2gm2Rss)

Avd=(Vx-Vy)/(Vin1-Vin2)=(Vx-Vy)/2Vin1

Avd=(-Rd/2)(gm1+gm2+4gm1gm2Rss)/(1+gm1Rss+gm2Rss)

三、视Rss为电流源时,

(Vx-Vy)/Vin1du to vin1=(-Rd1)/[(1/gm1)+(1/gm2)]-Rd2/[(1/gm2)+(1/gm1)]

(Vx-Vy)/Vin2du to vin2=(Rd2)/[(1/gm2)+(1/gm1)]-(-Rd1)/[(1/gm1)+(1/gm2)]

Avd=(Vx-Vy)/(Vin1-Vin2)=-(Rd1+Rd2)/[(1/gm1)+(1/gm2)]

如果Rd1=Rd2=Rd,gm1=gm2=gm,则Avd=-gmRd

如果Rd1=Rd2=Rd,gm2=2gm1=gm,则Avd=(-4/3)gmRd

这些资料还没有整理完,因为拖得太久就先贴出来与大家共同探讨。本篇中,着重讨论了共模和少部分差模情况,在后续的内容中,会从相关问题为出发点来进行整理,比如,增益减小、摆幅下降、输出频率下降、相位位移、噪音干扰等,这些都是我们应该知道的,问题出现了我们要做些什么?

[参考文献]

1、《模拟CMOS集成电路设计》 --- Razavi

2、《CMOS模拟集成电路设计》— Allen



来源:0次

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

本文介绍一款小尺寸、功能强大、低噪声的单芯片同步升压转换器。文章重点介绍了该集成电路的多个特性。这些特性能够增强电路性能,并支持定制,以满足各种应用的要求。

关键字: 升压转换器 集成电路 电路

在电子电路设计领域,放大器是极为关键的元件,用于增强电信号的幅度,以满足各类电子设备的需求。内置增益设置电阻的放大器和分立差动放大器是两种常见类型,它们在电路结构、性能表现、成本以及设计灵活性等方面存在诸多不同。深入了解...

关键字: 放大器 电信号 电路

在电子设备的保护领域,双向 TVS 管(瞬态电压抑制二极管)发挥着至关重要的作用,能有效抵御瞬态过电压对电路的损害。双向 TVS 管根据内部结构的不同,可分为共阴和共阳两种类型,它们在诸多方面存在显著差异。深入了解这些区...

关键字: 瞬态电压抑制二极管 双向 电路

在电子电路的世界里,电感是一种不可或缺的元件,它如同一个 “电惯性” 的守护者,默默影响着电路中电流的变化。电感量与流过电感的电流之间存在着复杂而精妙的关系,深入理解这种关系,对于掌握电路原理、设计电子设备以及解决实际电...

关键字: 电流 电感量 电路

电气设计领域常用的图纸包括电气原理图、电器元件布置图、电气安装接线图以及二次电路图。

关键字: 电路 原理图

一直以来,可控硅都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来可控硅的相关介绍,详细内容请看下文。

关键字: 可控硅 万用表 电路

在电子电路的世界里,电阻是最基础且不可或缺的元件之一,它如同电路中的 “交通指挥员”,通过阻碍电流的流动,实现对电压、电流的精准调控,保障各类电子设备的正常运行。然而,在实际应用中,电阻会因各种因素出现损坏,进而影响整个...

关键字: 电阻 电路 电流

在电子电路的广袤世界里,电感线圈作为一种基础且关键的电子元件,默默发挥着不可或缺的作用。从日常使用的手机、电脑,到复杂精密的工业控制设备、通信基站,电感线圈无处不在。它能够储存和释放电磁能量,实现滤波、振荡、变压等多种功...

关键字: 电感线圈 电子元件 电路

为增进大家对集成电路的认识,本文将对集成电路的分类以及集成电路的替换方法予以介绍。

关键字: 电路 指数 集成电路

为增进大家对集成电路的认识,本文将对集成电路的核心器件以及检测集成电路好坏的方法予以介绍。

关键字: 电路 指数 集成电路
关闭