当前位置:首页 > 工业控制 > 电子设计自动化
[导读]7.在原理图中怎样修改器件属性及封装类型?在菜单Text下拉菜单中选择Attribute特性,然后点击器件,则弹出一Attribute 窗口,点击Add按钮,则可以加入name,value,JEDEC_TYPE (封装类型) 等属性。8.如何在Pad Design中

7.在原理图中怎样修改器件属性及封装类型?在菜单Text下拉菜单中选择Attribute特性,然后点击器件,则弹出一Attribute 窗口,点击Add按钮,则可以加入name,value,JEDEC_TYPE (封装类型) 等属性。8.如何在Pad Design中定义Pad/via?及如何调用*.pad?在pad design中,建立pad 时,type选single类型,应该定义下面几层的尺寸:begin layer(有时是end layer), soldermask和 pastemask 。建立Via时,type一般选through,定义drill hole 的尺寸和所有的layer层(注意定义thermal relief和anti pad)以及soldermask。一般Pastemask和Regular一样大,soldmask比layer的尺寸大几个Mil,而thermal relief和anti pad比regular pad的尺寸大10Mil以上。9.做封装库要注意些什么?做封装既可以在Allegro中File->New->package symbol,也可以使用Wizard(自动向导) 功能。在这个过程中,最关键的是确定pad与pad的距离(包括相邻和对应的pad之间),以确保后期封装过程中元器件的Pin脚能完全的无偏差的粘贴在 Pad上。如果只知道Pin的尺寸,在设计pad的尺寸时应该比Pin稍大,一般width大1.2~1.5倍,length长0.45mm左右。除了 pad的尺寸需特别重视外,还要添加一些层,比如SilkScreen_top和Bottom,因为在以后做光绘文件时需要(金手指可以不要),Ref Des也最好标注在Silkscreen层上,同时注意丝印层不要画在Pad上。还应标志1号pin脚的位置,有一些特殊的封装,比如金手指,还可以加上 一层Via keep out,或者route keep out等等,这些都可以根据自己的要求来添加。操作上要注意的是建好封装后,一定不要忘了点击Create symbol,不然没有生成*.psm文件,在Allegro就无法调用。10.为什么无法Import网表?在Allegro中File选项中选Import―――>logic,在import logic type选HDL-concept,注意在Import from栏确认是工作路径下的packaged目录,系统有可能自动默认为是physical目录。11.怎么在Allegro中定义自己的快捷键?在 allegro下面的空白框内,紧接着command>提示符,打入alias F4(快捷键) room out(命令)。或者在Cadence 安装目录/share/pcb/text里有个env文件,用写字板打开,找到Alias定义的部分,进行手动修改既可。12.怎么进行叠层定义?在布线完成之后如何改变叠层设置?在 Allegro中,选Setup-?Cross-section。如果想添加层,在Edit栏选Insert,删除为del,材料型号,绝缘层一般为 FR-4,Etch层为Copper,层的类型,布线层选Conductor,铺铜层为Plane,绝缘层为Dielectric,Etch Subclass Name分别为Top,Gnd,S1,S2,Vcc,Bottom。Film Type一般选择Positive,plane层选择Negative。如果布线完成之后,发现叠层设置需要改动。比如原来设置的为3,4层是plane 层,现在需要改为2,5层,不能简单的通过重命名来改变,可先在2,5层处添加两层plane层,然后将原来的plane层删除。13.为什么在Allegro布局中元器件在列表中不显示或者显示而调不出来?首 先确定Psmpath,padpath的路径有没有设置,如果没有设置可以在Partdevelop里设置,或者在env文件中手动添加。也有可能器件在 列表中存在,但是无法调出,可检查该器件所用到的*.pad文件及封装库文件*.dra,*.psm是否存在于你的工作目录×××/physical里。 另外还有一种可能就是页面太小,不够摆放器件,可以在setup-draw size中调整。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海浦东新区举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先...

关键字: PCB AI 数字化

在PCB制造过程中,孔无铜现象作为致命性缺陷之一,直接导致电气连接失效和产品报废。该问题涉及钻孔、化学处理、电镀等全流程,其成因复杂且相互交织。本文将从工艺机理、材料特性及设备控制三个维度,系统解析孔无铜的根源并提出解决...

关键字: PCB 孔无铜

在电子制造领域,PCB孔铜断裂是导致电路失效的典型问题,其隐蔽性与破坏性常引发批量性质量事故。本文结合实际案例与失效分析数据,系统梳理孔铜断裂的五大核心原因,为行业提供可落地的解决方案。

关键字: PCB 孔铜断裂

在电子制造领域,喷锡板(HASL,Hot Air Solder Levelling)因成本低廉、工艺成熟,仍占据中低端PCB市场30%以上的份额。然而,随着无铅化趋势推进,HASL工艺的拒焊(Non-Wetting)与退...

关键字: PCB 喷锡板 HASL

在PCB制造过程中,阻焊油墨作为关键功能层,其质量直接影响产品可靠性。然而,油墨气泡、脱落、显影不净等异常问题长期困扰行业,尤其在5G通信、汽车电子等高可靠性领域,阻焊缺陷导致的失效占比高达15%-20%。本文结合典型失...

关键字: PCB 阻焊油墨

在5G通信、新能源汽车、工业控制等高功率密度应用场景中,传统有机基板已难以满足散热与可靠性需求。陶瓷基板凭借其高热导率、低热膨胀系数及优异化学稳定性,成为功率器件封装的核心材料。本文从PCB设计规范与陶瓷基板导入标准两大...

关键字: PCB 陶瓷基板

在电子制造领域,PCB(印刷电路板)作为核心组件,其质量直接影响整机性能与可靠性。然而,受材料、工艺、环境等多重因素影响,PCB生产过程中常出现短路、开路、焊接不良等缺陷。本文基于行业实践与失效分析案例,系统梳理PCB常...

关键字: PCB 印刷电路板

在PCB(印制电路板)制造过程中,感光阻焊油墨作为保护电路、防止焊接短路的关键材料,其性能稳定性直接影响产品良率与可靠性。然而,受工艺参数、材料特性及环境因素影响,油墨异常现象频发。本文聚焦显影不净、黄变、附着力不足等典...

关键字: PCB 感光阻焊油墨 印制电路板

在电子制造领域,印刷电路板(PCB)的表面处理工艺直接影响其可靠性、信号完整性和使用寿命。其中,化学镀镍浸金(ENIG,俗称“镀金”)与有机保焊剂(OSP)是两种主流工艺,但它们在失效模式、应用场景及成本效益上存在显著差...

关键字: PCB OSP工艺

在PCB设计的宏伟蓝图中,布局与布线规则犹如精密乐章中的指挥棒,是铸就电路板卓越性能、坚不可摧的可靠性及经济高效的制造成本的灵魂所在。恰如一位巧手的园艺师,合理的布局艺术性地编排着每一寸空间,既削减了布线交织的繁复迷宫,...

关键字: PCB 电路板
关闭