当前位置:首页 > 工业控制 > 电子设计自动化
[导读]信号在媒质中传播时,其传播速度受信号载体以及周围媒质属性决定。在PCB(印刷)中信号的传输速度就与板材DK(介电常数),信号模式,信号线与信号线间耦合以及绕线方式等有关。随着PCB走线信号速率越来越高,对时序

信号在媒质中传播时,其传播速度受信号载体以及周围媒质属性决定。在PCB(印刷)中信号的传输速度就与板材DK(介电常数),信号模式,信号线与信号线间耦合以及绕线方式等有关。随着PCB走线信号速率越来越高,对时序要求较高的源同步信号的时序裕量越来越少,因此在PCB设计阶段准确知道PCB走线对信号时延的影响变的尤为重要。本文基于仿真分析DK,串扰,过孔,蛇形绕线等因素对信号时延的影响。1.引言信号要能正常工作都必须满足一定的时序要求,随着信号速率升高,数字信号的发展经历了从共同步时钟到源同步时钟以及串行(serdes)信号。在当今的消费类,通信服务器等行业,源同步和串行信号占据了很大的比重。串行信号比如常见PCIE,SAS,SATA,QPI,SFP+,XUAI,10GBASE-KR等信号,源同步信号比如DDR信号。串行信号在发送端将数据信号和时钟(CLK)信号通过编码方式一起发送,在接收端通过时钟数据恢复(CDR)得到数据信号和时钟信号。由于时钟数据在同一个通道传播,串行信号对和对之间在PCB上传输延时要求较低,主要依靠锁相环(PLL)和芯片的时钟数据恢复功能。源同步时钟主要是DDR信号,在DDR设计中,DQ(数据)信号参考DQS(数据选通)信号,CMD(命令)信号和CTL(控制)信号参考CLK(时钟)信号,由于DQ的速率是CMD DDR2/ DDR3.DDR4预计在2015年将成为消费类的主要设计,随着DDR信号速率的不断提高,在DDR4设计中特别是DQ和DQS之间传输时延对设计者提出更高的挑战。在PCB设计的时候为了时序的要求需要对源同步信号做一些等长,一些设计工程师忽略了这个信号等长其实是一个时延等长,或者说是一个‘时间等长’。2.传输时延简介Time delay又叫时延(TD),通常是指电磁信号或者光信号通过整个传输介质所用的时间。在传输线上的时延就是指信号通过整个传输线所用的时间。Propagation delay又叫传播延迟(PD),通常是指电磁信号或者光信号在单位长度的传输介质中传输的时间延迟,与“传播速度”成反比例(倒数)关系,单位为“Ps/inch”或“s/m”。从定义中可以看出时延=传播延迟*传输长度(L)其中v为传播速度,单位为inch/ps或m/s c为真空中的光速(3X108 m/s)εr为介电常数PD为传播延迟,单位为Ps/inch或s/m TD为信号通过长度为L的传输线所产生的时延L为传输线长度,单位为inch或m从上面公式可以知道,传播延迟主要取决于介质材料的介电常数,而传播时延取决于介质材料的介电常数、传输线长度和传输线横截面的几何结构(几何结构决定电场分布,电场分布决定有效介电常数)。严格来说,不管是延迟还是时延都取决于导体周围的有效介电常数。在微带线中,有效介电常数受横截面的几何结构影响比较大;而串扰,其有效介电常数受奇偶模式的影响较大;不同绕线方式有效介电常数受其绕线方式的影响。3.仿真分析过程3.1微带线和带状线传输时延PCB中微带线是指走线只有一个参考面,如下图1;带状线是指走线有2个参考面,如下图2。带状线由于电磁场都被束缚在两个参考面之间的板材中,所以走线的有效介电常数为板材的介电常数。微带线会导致部分电磁场暴露在空气中,空气的相对介电常数约为1.0006,板材如常规FR4的介电常数为4.2,那么微带线的有效介电常数在1和4.2之间,可以利用下面的公式计算微带线的有效介电常数「Collins,1992」:εe = (εr +1)/2 + (εr -1)/2(1+12H/W)-1/2 + F -0.217(εr -1)T/√WH 3.1 F = 0.02 (εr -1)(1-W/H)2 (W/H 1) 3.2其中,εe为有效介电常数,εr为材料的介电常数,H为导线高于地平面的高度,W为导线宽度,T为导线厚度。图4微带线层叠与时延图5带状线层叠和时延在图4和图5的层叠结构下,1000mil的走线时延差=179.729ps-147.954ps=31.775ps,可以看出这个差距是非常大的。在做源同步的DDR同组等长时候只考虑物理等长会带来很严重的''时间不等长。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先进封装、...

关键字: PCB 电子制造 AI

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海浦东新区举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先...

关键字: PCB AI 数字化

在PCB制造过程中,孔无铜现象作为致命性缺陷之一,直接导致电气连接失效和产品报废。该问题涉及钻孔、化学处理、电镀等全流程,其成因复杂且相互交织。本文将从工艺机理、材料特性及设备控制三个维度,系统解析孔无铜的根源并提出解决...

关键字: PCB 孔无铜

在电子制造领域,PCB孔铜断裂是导致电路失效的典型问题,其隐蔽性与破坏性常引发批量性质量事故。本文结合实际案例与失效分析数据,系统梳理孔铜断裂的五大核心原因,为行业提供可落地的解决方案。

关键字: PCB 孔铜断裂

在电子制造领域,喷锡板(HASL,Hot Air Solder Levelling)因成本低廉、工艺成熟,仍占据中低端PCB市场30%以上的份额。然而,随着无铅化趋势推进,HASL工艺的拒焊(Non-Wetting)与退...

关键字: PCB 喷锡板 HASL

在PCB制造过程中,阻焊油墨作为关键功能层,其质量直接影响产品可靠性。然而,油墨气泡、脱落、显影不净等异常问题长期困扰行业,尤其在5G通信、汽车电子等高可靠性领域,阻焊缺陷导致的失效占比高达15%-20%。本文结合典型失...

关键字: PCB 阻焊油墨

在5G通信、新能源汽车、工业控制等高功率密度应用场景中,传统有机基板已难以满足散热与可靠性需求。陶瓷基板凭借其高热导率、低热膨胀系数及优异化学稳定性,成为功率器件封装的核心材料。本文从PCB设计规范与陶瓷基板导入标准两大...

关键字: PCB 陶瓷基板

在电子制造领域,PCB(印刷电路板)作为核心组件,其质量直接影响整机性能与可靠性。然而,受材料、工艺、环境等多重因素影响,PCB生产过程中常出现短路、开路、焊接不良等缺陷。本文基于行业实践与失效分析案例,系统梳理PCB常...

关键字: PCB 印刷电路板

在PCB(印制电路板)制造过程中,感光阻焊油墨作为保护电路、防止焊接短路的关键材料,其性能稳定性直接影响产品良率与可靠性。然而,受工艺参数、材料特性及环境因素影响,油墨异常现象频发。本文聚焦显影不净、黄变、附着力不足等典...

关键字: PCB 感光阻焊油墨 印制电路板

在电子制造领域,印刷电路板(PCB)的表面处理工艺直接影响其可靠性、信号完整性和使用寿命。其中,化学镀镍浸金(ENIG,俗称“镀金”)与有机保焊剂(OSP)是两种主流工艺,但它们在失效模式、应用场景及成本效益上存在显著差...

关键字: PCB OSP工艺
关闭