当前位置:首页 > 单片机 > 单片机
[导读]1 COP820CJ芯片介绍COP820CJ 是美国国家半导体公司生产的一款8位单片机,它内含64字节RAM和1k字节ROM,并带有24个I/O口,时钟频率为10MHz,工作电压为 2.5~6.0V。 COP820 CJ具有多输入唤醒(MIWU)、低压复位保护

1 COP820CJ芯片介绍

COP820CJ 是美国国家半导体公司生产的一款8位单片机,它内含64字节RAM和1k字节ROM,并带有24个I/O口,时钟频率为10MHz,工作电压为 2.5~6.0V。 COP820 CJ具有多输入唤醒(MIWU)、低压复位保护、片上模拟比较器和低电磁辐射设计等功能,其I/O口可编程为三态、推挽输出、弱上拉输入等类型。

COP820CJ的端口分为L/I/D/G四类。其中I口为4位输入端口,D口为4位输出端口,G口有6位I/O口和2位输入口,L口为8位I/O 口。同时L口也是芯片的唤醒端口,其中L1和L2又是比较器输入口,L3又是比较器输出口。L口配有数据寄存器(LDATA[0DOH])和配置寄存器(LCONF[0D1H]),两寄存器可共同决定该端口的状态。具体关系见表1所列。

COP820CJ的片上RAM、端口、寄存器均可映射到00H~FEH的数据内存空间,其中C0~CFH段主要是唤醒及用看门狗控制寄存器,D0~DFH 段有8个端口类寄存器,E0~EFH段为计时器和系统寄存器。00~2FH及F0~FFH为RAM地址。其中,F0~FEH段可用作寄存器,并包括B地址寄存器[FCH]、X地址寄存器[FEH]和SP堆栈指针[FDH]三个专用寄存器。

2 COP820CJ的工作原理

2.1基本原理

利用COP820CJ的片上模拟比较器和脉冲宽度调制方式可以构成由软件调控且输入范围可变的A/D转换器。其工作原理图见图1所示。图中,L1和L2 为比较器输入端,当电容电压小于输入电压时, L3端输出高电平脉冲。反之,L3输出低脉冲,并对低脉冲减1计数。电路中的输入电压可通过L1、L2之间并联的两个背向二极管对电容C1快速充放电,以使两者电位迅速接近。

比较器允许的输入电压为0.4V~VCC-1. 5V(此时电容电压与充电、放电时间之间为近似线性关系),实际输入电压范围可能要更小一些。因此,可以通过设定高低脉冲的参数使电容电压始终保持在测量范围之内。若电源为5V,时钟频率为10MHz,脉冲周期为24个,即2.4μs,输入电压范围是1.0V~3.3V。那么,可以设置高脉冲为先低8个时钟,再高16个时钟;设置低脉冲为先高5个时钟,再低19个时钟。这样,如果L3始终输出高脉冲,电容电压VH将近似为VCC×16/24=3.30V;如果L3始终输出低电平,电容电压VL则近似为VCC×5/24=1.04V。进行A/D转换时,L3可根据比较结果输出高低脉冲,当脉冲数足够多时,计数器的值即代表了输入的电压值,并可用下式表示:

其中,NTON为计数器的值,NTOTAL为总脉冲数。

2.2转换时间及分辨率

由于脉冲周期为2.4μs,若脉冲总数为100,那么,进行两次计数的转换时间近似为2.4×100×2=480μs。当输入为高速变化的信号时,只需减少脉冲总数即可。如脉冲总数为100,输入电压为1.0~3.3V,则分辨率为23mV。为提高分辨率,可先对输入信号进行粗测,然后调整高低脉冲的占空比,以使对应电压略超出测量结果的上下限值,这样即可获得更高的分辨率。

3软件设计

图 2所示是用COP820CJ设计的A/D转换器的工作软件流程图。其中,控制寄存器2(CNTRL2[CC])的第三位是比较器允许位,第四位为比较器输出。X指令为交换两寄存器中的数据。

“SBIT(RBIT)i,n”指令为将n 寄存器的第i位置1(0)“IFBITi,n”指令在n寄存器的第i位为1时执行下一条指令,否则跳过。“DRSZn”指令的作用是先将寄存器n的值减 1,如结果非零,则执行下一条指令,否则跳过。

要保证脉冲周期为24个时钟,必须精确计算指令周期。其指令周期的时钟数分别为:


参考文献
[1]COP820CJData Sheet.National Semiconductor, 1999,5.
[2]刘乐善.微型计算机接口技术原理及应用[M]. 1996,3.
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

到目前为止,我们已经研究了两种电机驱动拓扑结构,它们会在电机上产生单极 PWM 电压波形,但如果您想快速减速,则无法为电机提供任何制动。

关键字: 单极 4 象限 PWM 电机系统

开关电源LLC是一种高效的电源转换技术,被广泛应用于各种电子设备中。它结合了谐振电路和PWM(脉宽调制)控制的优点,实现了高效率和低电磁干扰的性能。本文将详细阐述开关电源LLC的原理,包括其工作原理、控制策略以及应用优势...

关键字: 开关电源 LLC PWM

在这篇文章中,小编将对端口的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 端口 控制端口

开关电源是一种高频化电能转换装置,是电源供应器的一种。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。

关键字: 开关电源 PWM

端口隔离是为了实现报文之间的二层隔离,可以将不同的端口加入不同的VLAN,但会浪费有限的VLAN资源。采用端口隔离特性,可以实现同一VLAN内端口之间的隔离。

关键字: 数字 端口 隔离?

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。 开关电源利用输入电压的变化,使输出电压的脉冲宽度发生变化的调制方式,称为脉冲宽度调制方式,简称脉宽式,英文简示PW...

关键字: PWM PWM开关电源

那么,哪种 PWM 技术最适合您的电机控制应用?当然有很多选择可供选择,每一种都具有独特的优点和缺点。在关于该主题的最后一篇文章中,我们将讨论直流和交流电机的再生。由于电动和混合动力汽车的普及,这在过去十年中已成为一个更...

关键字: 电机驱动 PWM

那么,哪种 PWM 技术最适合您的电机控制应用?希望到现在为止,您已经了解 PWM 过程的用途有多么广泛,以及该过程中的细微变化如何对电机性能产生巨大影响。在之前有关该主题的文章中,我仅讨论了适用于 H 桥中直流电机的技...

关键字: 电机驱动 PWM

那么,哪种 PWM 技术最适合您的电机控制应用?到目前为止,您可能已经猜到没有“一种”PWM 技术对所有应用都是最佳的。但是我们今天要讨论的技术非常接近。它被称为单极 4 象限 PWM 技术(形式 II)。

关键字: 电机驱动 PWM

那么,哪种 PWM 技术最适合您的电机控制应用?到目前为止,我们已经研究了三种不同的 PWM 技术。有些可以将能量再生回直流电源,有些则不能。但它们都有一个共同特征:单极电压波形。换句话说,对于任何给定的 PWM 周期,...

关键字: 电机驱动 PWM
关闭
关闭