当前位置:首页 > 单片机 > 单片机
[导读]摘要:在SP061A单片机上实现对ECC信号的FFT、滤波和压缩。合理组织SP061A的硬件资源,并采取数据分段长度可选、避开高频分量的计算和简易的数据压缩算法,使存储开销、运算速度和精度满足实用要求。 关键词:ECC数据

摘要:在SP061A单片机上实现对ECC信号的FFT、滤波和压缩。合理组织SP061A的硬件资源,并采取数据分段长度可选、避开高频分量的计算和简易的数据压缩算法,使存储开销、运算速度和精度满足实用要求。 关键词:ECC数据 SP061A FFT 滤波 压缩 在远程心电监护系统中,心电信号采集器是实现心电信号的现场采集、存储和传输的重要终端设备。对采集器的基本要求之一是:及时对采集到的心电信号进行滤波和压缩等预处理,以减少存储器占用量和数据远程传输到头端服务器的开销。为降低成本,这些任务一般采用单片机完成。然而,限于单片机的资源、运算能力和运行速度,许多压缩算法,如周期压缩法、小波变换压缩法和神经网络方法等无法使用,一些缺乏快速算法的频域变换法也很难达到实用的程度[3]。高性价比的心电信号采集器的研制一直是一个热点问题。


通过研究FFT(快速傅立叶变换)的算法结构和心电信号的特点发现,采用分段FFT,保留分析心电波形需要的谐波成分,巧妙地组织单片机的片内RAM资源,可使数据运算量和RAM开销大大减少,能实现数据滤波和压缩,且能达到实时采集与处理所需的运算速度。 SP061A是凌阳科技公司研制的一款16位超低功耗单片机[1],片内有2K字RAM、10位A/D转换器,CPU时钟高达49.152MHz,且价格低廉,还特别具有一套精简、高效的指令系统和类似于DSP的硬件内积运算功能。这些特点很适合心电信号的采集和处理。图1是作者研发的心电信号采集器中有关硬件的组成框图:多路ECG模拟信号送SP061A进行A/D转换,转换数据送NVRAM DSl265W暂存;待采集完成后,由SP061A进行FFT和滤波、压缩;压缩结果送回DSl265W,再适时通过电话线或计算机网络送到监护中心处理、诊断。 本文仅讨论用SP061A实现FFT[2]、低通滤波与压缩。设对心电信号的采样率为500次/秒,数据精度为10位。

1 数据分段算法 设采集到的原始数据存于片外RAM中,将这些数据分为若干段,逐段读入片内进行FFT。各段的变换结果及时送回片外RAM中保存。 按照FFT的要求,段中包含的数据个数必须为2N,N为FFT变换的层数。考虑到SP061A片内RAM为2K字,此处取N=9或N=10,即段中数据为 512或1024,以保证RAM够用。显然,段头和段尾的数据大小相等时,以该段作为一个周期而无限重复的波形将无跳跃点。经过“FFT变换到频域”→ “丢弃高频成分”→“IFFT(快速傅立叶反变换,在头端PC上进行)”一系列操作而重建的时域波形,段与段之间的结合点将是连续的。但实际上,按上述分段几乎不能做到段头和段尾的数据大小相等。取两种段长的目的就是提供两种可能的选择——选择首尾数据之差较小的段作FFT。尽管如此,段首尾数据之差仍存在,经处理、复原后的波形在段的结合部位仍将有间断点。而采用加窗、延拓等办法在单片机上又难以实现。解决问题的策略为:分段时,各段间的数据首、尾各覆盖10个数据。头端PC在完成重建后,应将首、尾各5个数据丢弃。

2 时域数据的整序与加载 分段后,将该段加载到SP061A的RAM中,以实施FFT。原始数据以采集的时间先后顺序存放,加载时则应“整序”,即改变数据的先后顺序,以保证变换后的频域数据为正序。 设Rs为指向片外RAM的、待加载的段内数据的偏移地址,Rs=O…2N-1;Rd为指向片内RAM的、待写入数据的偏移地址,如图2。将Rs按N位二进制逐位高低互换就得到只Rdo例如,当N=9时,若Rs为011001011B,则Rd为110100110B。为加快计算速度,将N=9时及,的值制表存于FLASHROM,供整序时查询。当N=10时,取Rs的B0~B9位查表获得Rd,再将Rs的B10位传送到Rd,的B15位,最后将Rd循环左移 1位。 FFT变换是复数运算。在将原始数据加载到片内RAM的同时,应把实数转换为复数,即令虚部为0。于是,一个原始数据加载到RAM中要占用2个字。复数的存储格式为:实部字存于低地址,虚部字存于相邻的高地址。现在考察RAM需要量。N=9时,段长为512个数据,加载到RAM中要占用 512%26;#215;2=1024字;N=10时,段长为1024个数据,全部加载将占用1024%26;#215;2=2048字,超过片内RAM 的可用容量。此时,将数据分为两部分,先将第一部分加载到RAM作FFT,得到中间结果,再将第二部分加载、变换,最后相加合成。 3 FFT变换及低通滤波 FFT将时域序列{χ[i],i∈0…2N}变换为频域序列{F[i],i∈0…2N}。为了实现低通滤波,仅须保留{F[i]}中≤75Hz的频率分量。当N=9时,应保留{F[i]}中的前77个低频分量;当N=10时,则应保留{F[i]}中的前154个低频分量。这也同时减少了计算量,加快了计算速度;存放周转量所需的片内RAM也能得到保证。 为叙述简便,以N=3为例,研究FFT的计算结构,如图3所示。 图3中,W[k]是复因子,W[k]=COS[(2kπ)/N ]+jsin[(2kπ)/N],k=0…2N-1。将W[k]的实部和虚部都乘2 14,取整后制成表,存于FLASH ROM中,供程序查表获得其值;而W[k]与某数相乘,将32位运算结果右移14位作为积。这就使全部运算为整数运算,适应SP061A的硬件乘法功能。 由图3知,第一层的计算仅涉及实部加减,虚部保持为0,可单独进行。从第二层开始有复数乘,但是,当只需计算{F[i]}中的低频分量时,许多中间结果可不计算。例如,如果需计算出F[0]和F[1](即保留原始信号的直流分量和1次谐波),则仅需计算χ[0]3、χ[4]3和χ[1]、χ[5]3。计算层数N越多,减少的运算也越多。 图4 复数乘可利用SP061A的内积功能实现。例如,要计算χ[i]%26;#215;W[j],设χ[i]%26;#215;W[j]= (a+jb)%26;#215;(c+jd)=ac+(-bd)+j(bc+ad)。显然,结果的实部和虚部均为内积形式,只是设置操作数时须注意符号和排列顺序。 上述方法使计算量显著减少。以512点FFT为例,计算出全部频率分量需要512%26;#215;log2 512=4608次运算,其中含有2048次复数乘。若计算77个低频分量,则只有3611次运算,其中含有1767次复数乘。 当N=10时,计算点数达1024,片内RAM不够用。此时,应按1024点的整序次序取数,先对χ[0]1~χ[511]1,进行FFT,算出 F1[0]~F1[153],暂存于片内RAM中的一个缓冲区;再对χ[512]1~χ[1023]1进行FFT,算出F2[0]~F2[153];则最终结果为:F[i]=Fl[i]+F2[i],i=0…153。 为避免计算中产生数据溢出,从第三层开始,对χ[i]4~χ[i]9都算术右移1位。操作的累积结果使F[i]缩小了64倍,故在重建时应扩大64倍。如此操作实际上降低了运算精度,但实验表明,重建的波形完全满足医学观察要求。 4 数据压缩 采取如下简易格式实现数据压缩: 对于F[0],因虚部为0,仅用一个字存放实部,重建时默认虚部为0; 对于F[i],i>0,若实部在—64~63范围内且虚部在—128~127范围内,则用2个字节存放,格式如下:

两种格式由第1字节的最高位区分。 5 实验结果与分析 用自行研发的心电信号采集器进行实验,对采集到的4个样本进行处理,实验结果如表1。表1中,PRD为均方根误差,CC为相关系数,计算公式为:


式中m为样本系列的数据个数,x[n]、x分别为原始数据系列及其平均值,y[n]、y分别为重建后的系列及其平均值。CR为压缩比,CR=1(m%26;#215;10)/(压缩后的字节数%26;#215;8) 处理时间为SP061A完成FFT与压缩花费的时间,CPU时钟设置为49.152MHz。 表1 实验结果数据 样本编号代表波形 CR PRD(%) CC 原始数据个数压缩后字节数处理时间(ms) 1 图4(a) 3.93 23.132 0.97103 17926 5694 254 3 图4(b) 3.88 14.058 0.98999 19290 6086 263 6 图4(c) 4.08 3.0731 0.99953 65126 20884 857 9 图4(d) 3.92 7.4203 0.99592 12804 3978 179 实验表明,本方法用价格低廉的单片机实现了复杂的FFY与数据压缩,计算耗时少,所得结果满足实用要求。由图4可见,重建后的波形在段间结合点无畸变。噪声较弱时PRD和CC参数较为理想;而当噪声很强时,如图4(a)、4(b),因滤除了高频噪声而使得重建波形与原始波形差距较大,PRD和CC参数已不能说明问题。压缩算法简便,CR约为4。顺便说明,本方法未实现50Hz干扰滤波、肌电干扰滤波和基线漂移,这些处理可在头端PC上进行。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

现有股东Philip Fayer将转出其绝大部分现有股权,现有股东Novacap和CDPQ将转出其大部分现有股权 主要亮点: 全球领先的支付公司Nuvei与金融科技私募股权投资领域的重要企业Advent通过全现...

关键字: NOVA IP INTERNATIONAL CD

上海2024年4月16日 /美通社/ -- 根据研究和经验, 设备和系统50%的故障或失效可直接或间接地是由转子不平衡引起的。在先前申克现场动平衡仪的基础上, 申克又创新了一套更成熟的移动式平衡设备:SmartBalan...

关键字: BALANCE SMART FFT 振动分析

新思科技全球总裁兼首席执行官Sassine Ghazi深入分享万物智能时代的全新机遇

关键字: EDA AI IP

2023年,AIGC给我们的工作生活带来了前所未有的生产力提升,也引爆了一波AI芯片应用。但纵观全球半导体产业,各行业复苏不及预期,市场需求持续低迷,进入L型底部。

关键字: 安谋科技 AI 智能汽车 异构计算 IP review2023

为数据中心提供卓越的吞吐量、AI编码和图像增强性能。

关键字: IP 半导体

2023年12月21日,由芯原股份主办的第二届南渡江智慧医疗与康复产业高峰论坛成功召开,芯原股份创始人、董事长兼总裁戴伟民博士在开幕致辞分享了对于本届论坛的期望和对于未来海南康养产业的愿景。

关键字: 智慧医疗 康养产业 芯原 IP

业内消息,近日有阿里员工在社交媒体平台发文称,自己在盒马总部无法使用山姆会员 App,质疑盒马总部的 IP 地址被山姆屏蔽。该员工表示,来盒马总部开会,打算逛一下山姆会员 App,结果完全打不开。还以为手机出问题了,重启...

关键字: IP

随着汽车智能化的发展,信息安全变得尤为重要。在电影《速度与激情8》中黑客操纵大量自动驾驶汽车坠楼攻击的画面,或许在未来也不仅仅是只存在电影里夸张刻画。

关键字: 车规 信息安全 IP HSM 安谋科技 山海 S20F SPU

Chiplet是一种微型集成电路技术,它代表了半导体设计和制造的新趋势。在传统的单一SoC设计中,所有的功能都被集成到一块大型芯片上。相比之下,Chiplet设计采用了一种模块化方法,将不同的功能划分到多个小型芯片上,然...

关键字: PHY Chiplet IP 奎芯科技

近日,第11届EEVIA年度中国硬科技媒体论坛暨产业链研创趋势展望研讨会在深圳召开,上海合见工业软件集团产品工程副总裁孙晓阳在会上发布了主题为“把握芯片设计关键核心,助力国产EDA新格局”的演讲。

关键字: 芯片设计 仿真 验证 chiplet 合见工软 IP
关闭
关闭