当前位置:首页 > 单片机 > 单片机
[导读] 1 主从式多机通信  所谓主从式多机系统,即在数个arm(或单片机)中,有一个是主机,其余的为从机。从机要服从主机的调度、支配,其拓扑结构如图1所示。    主机信息可以发到各个从机,从机发送的

1 主从式多机通信

  所谓主从式多机系统,即在数个arm(或单片机)中,有一个是主机,其余的为从机。从机要服从主机的调度、支配,其拓扑结构如图1所示。

  


  主机信息可以发到各个从机,从机发送的信息只能被主机接收,从机之间不进行通信。

  51单片机串口不同寻常的特征是包括第9位方式(在串口模式2和模式3下)。它允许把在串行口通信增加的第9位用于标志特殊字节的接收。一般约定第9位为高时表示该字节为地址字节,第9位为低时为数据字节。第9位方式允许接收单片机信息,仅当字节具有一个第9位时才能被中断。用这种方式,主机首先广播1字节,并让其第9位为高,同时收到该字节的各个从机,只有地址相符的打开,以接收后面的数据字节。所接续的数据字节(第9位为低)不能引起其他从机中断,因为未送它们的地址。

  51单片机用9位方式多机通信时,串口模式必须在方式2或方式3。

  其实现多机通信的原理和工作过程如下:作主机的8051的SM2应设定为O,作从机的sM2设定为1。主机发送并被从机接收的信息有两类:一类是地址,用于指示需要和主机通信的从机地址,由串行数据第9位为“1”来标志;另一类是数据,由串行数据第9位为“0”来标志。由于所有从机的SM2=1,故每个从机总能在R1=O收到主机发来的地址(因为串行数据的第9位为“l”),并进入各自的中断服务程序。在中断服务程序中,每台从机把接收到的从机地址和它的本机地址(系统设计时所分配)进行比较。所有比较不相等的从机均从各自的中断服务程序中退出(SM2仍为1),只有比较成功的从机才足被主机寻址通信的从机。被寻址的从机在程序中使SM2=0,以便接收随之而来的数据或命令(RB8=0)。上述过程进一步归结如下:

  ①主机的SM2为O,所有从机的SM2=1,以便接收主机发来的地址。

  ②主机给从机发送地址时,第9数据位应设置l,以指示从机接收这个地址。

  ③所有从机在SM2=1、RB8=1和RI=O时,接收主机发来的从机地址,进入相应中断服务程序,并与本机地址相比较,以便确认是否为被寻址从机。

  ④被寻址从机通过指令清除SM2,以便正常接收数据,并向主机发回接收到的从机地址,供主机核对。未被寻址的从机保持SM2=1,并退出各自中断服务程序。

  ⑤完成主机和被寻址之间的数据通信,被寻址从机在通信完成后重新使SM2=l,并退出中断服务程序,等待下次通信。

  从以上8051实现9位方式多机通信的过程可见,关键问题在于:

  ①发送端(主机)如何发送第9位,并且可编程设置1或O;

  ②接收端(从机)如何接收到这第9位,并判断出是l还是0。

  以上问题,8051串口可通过控制寄存器SCON中的TB8、RB8和SM2位的设置和读取轻松解决,但在ARM中并没有与805l类似功能的寄存器。那么ARM7多机系统怎样实现如上9位方式多机通信呢?下面通过分析arm串口(以UART0为例)的内部结构和相关寄存器,给出一个有效的解决方案。

2 arm7串口UART0内部结构


  使用ARM7串口UARTO之前须设置5个寄存器,即中断使能寄存器UOIER、UARTO格式控制寄存器UOLCR、FIFO控制寄存器UOFCR和波特率设置寄存器UODLM和UODLL。发送过程是:CPU内核通过VPB接口对UARTO的寄存器进行读写访问,数据首先进入发送缓存UOTHR,经发送移位寄存器UOTSR逐位移出,经TxDO引脚输出。接收过程是:数据经RxDO,先进入接收移位寄存器UORSR,经接收缓存U0RBR,通过VPB与CPU内核相连。特别注意的是,通信过程中arm7串口中的中断标志寄存器U0IIR和UART0状态寄存器UOLSR的各位将随着通信收发而自动受到影响,也就是说这两个寄存器记录了数据通信过程的状态信息,这些信息很有用。


  UOIIR寄存器的描述如表1所列。

  

  UOIIR提供状态代码,用于指示一个挂起中断的中断源和优先级。在访问UOIIR的过程中,中断被冻结。如果在访问UOIIR时产生了中断,该中断将被记录,在下次访问UOIIR时可以读出,避免了中断的丢失。

  UOLSR寄存器描述如下:

  

  RDR:接收数据就绪。判断该位是否置1,决定能否从FIF0中读取数据。

  0——UORBR为空。

  l——UORBR中包含有效数据。从接收FIFO中读走所有数据后,恢复为O。

  0E:溢出错误标志。当U0RBR寄存器中已经有新的字符就绪,而接收FIF0已满时,该位置位。

  0——接收缓存区没有溢出。

  1——接收缓存区发生溢出错误。

  PE:奇偶校验错误。在使能奇偶校验位之后,对所有接收的数据都进行奇偶校验,如果与UOLCR中的设置不符,将引起奇偶校验错误。

  O——没有发生奇偶校验错误。

  1——发生奇偶校验错误。读操作使该位恢复为O。

  FE:帧错误标志。当接收字符的停止位为O时,产生帧错误。

  O——没有发生帧错误。

  1——发生帧错误。读取该位时恢复为O。

  BI:间隔中断标志。在发送数据时,如果RXDO引脚保持低电平,将产生间隔中断。发生间隔中断后,接收模块停止数据接收。

  O——没有发生间隔中断。

  1——发生间隔中断。

  THRE:反映UOTHR是否为空,也可以认为发送FIFO是否为空。

  O——不为空。

  1——空。对UOTHR进行写操作,使该位恢复为O。

  TEMT:当发送移位寄存器和UOTHR均为空时,该位置位。

  0——不为空。

  1——空。对UOTHR进行写操作,使该位恢复为0。

  RXFE:如果一个带有接收错误(如帧错误、奇偶错误或间隔中断)的字符装入UORBR时,该位置位。

  O——UORBR中没有接收错误,或UOFCR[O]为0。

  1——UORBR中包含至少一个UARTO Rx错误。

  另外,还有两个很重要的寄存器:一个是前面提到的格式控制寄存器UOLCR,另一个是FIFO控制寄存器UOFCR。

  UOLCR寄存器的描述如下:

  

  其中第3位和第4、5位十分重要。

  奇偶使能:控制是否进行奇偶校验。如果使能,发送时将添加一位校验位。

  O——禁止奇偶产生和校验。

  1——使能奇偶产生和校验。

  奇偶选择:设置奇偶校验类型。

  OO——奇数(数据位+校验位=奇数)。

  01——偶数(数据位+校验位=偶数)。

  10——校验位强制为1。

  11——校验位强制为O。

  U0FCR寄存器的描述如下:

  

  这里面注意第6、7位。

  Rx触发点设置:通过设置这两位可以调整接收FIF0中触发RDA中断的有效字节数量。

  00——触发点O(1字节)。

  01——触发点1(4字节)。

  10——触发点2(8字节)。

  11——触发点3(14字节)。

3 9位方式多机通信编程实现


  上面已说明,9位方式多机通信的关键是第9位的编程发送和第9位的接收和判断。

  对于发送端,利用UOLCR寄存器的设置便能实现第9位的编程发送。

  UOLCR=0x2B; //带奇偶校验,强制为l

  UOLCR=Ox3B; //带奇偶校验,强制为O

  通过以上设置,只要编程发送1字节,arm就自动将第9位按程序设置的0或1发送出去。


  难点在于接收端,即接收端把接收到的第9位放到哪了,程序员又如何知道这第9位是0还是1。

  其实,ARM并不像51单片机那样把接收到的第9位数据自动装入SCON的RB8。实际上,ARM并没有这样的寄存器SCON,也没有RB8位。要实现判断第9位为1或0,只能利用arm串口通信的奇偶校验功能!

  具体思路如下:

  ①设置奇偶校验使能;

  ②编程读取UOLSR寄存器的PE位(具体含义见UOLSR寄存器的描述部分);

  ③编程判断收到的l字节中有多少个“1”,并设置一标志PP;

  ④将上述标志与PE位比较处理;

  ⑤比较的结果就正确表示了第9位是“O”,还是“1”。

  按照以上思路,可有效实现第9位的判断。下面给出相应的程序代码:

  

  上述程序中变量u9就是得到的第9位标志:

  当u9=OxFF时,说明第9位为1;

  当u9=OxFE时,说明第9位为O。

  还需注意的是,接收端奇偶校验设置成偶校验还是奇校验,要根据后面程序中标志pp的设置而定。

  4 总 结

  本设计方案巧妙地应用arm串口通信奇偶校验功能,实现了9位方式的多机通信,并在相关课题中成功应用,而且保证了通信的可靠性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

串口全称是串行接口(Serial Interface),串口通讯指仅用一对传输线就能将数据以比特位进行传输的一种通讯方式。尽管串口通讯必按字节传输的并行通信慢,但是串口可以在仅用两根线的情况下完成数据传输,大大降低了成本...

关键字: 串口 UART

随着电脑技术的发展,一些老的设备在新电脑上不能被使用,主要原因是不管是台式电脑,还是笔记本电脑,都很少有串口接口,也就是我们常说的COM口。好在这些设备都有USB接口,不妨通过接口转换的方式,使我们的设备在新电脑上重新被...

关键字: 串口 USB

串口:串口是一个泛称,UART、TTL、RS232、RS485都遵循类似的通信时序协议,因此都被通称为串口。串口通讯应用是工控人必须掌握的一个技能,几乎在每一个项目中都会用到,今天我们就来详细比较一下它们究竟有何区别。

关键字: 串口 协议

在嵌入式开发过程中,许多系统通常使用串口驱动来满足通信要求,但在实际应用中,使用SPI通信方式会更加高效和快捷。

关键字: 串口 驱动

串口WiFi模块作为新一代嵌入式WiFi模块,因其体积小、功耗低的特点,广泛应用于物联网、智能家居等领域。

关键字: 串口 WiFi模块 嵌入式

在现代嵌入式系统设计中,FPGA(现场可编程门阵列)的灵活性和可重构性使其成为许多应用的理想选择。而在FPGA的开发和部署过程中,如何实现远程升级和故障恢复成为了一个重要议题。本文将详细探讨如何通过BPI FLASH实现...

关键字: FPGA 串口 MultiBoot 嵌入式系统

在现代电子设计中,FPGA(现场可编程门阵列)因其高度的灵活性和可重构性,成为众多领域的核心组件。特别是在需要动态更新或调整系统功能的场景中,FPGA的串口升级和MultiBoot功能显得尤为重要。本文将深入探讨FPGA...

关键字: FPGA 串口 MultiBoot

之前有个同事因为用串口查询方式发送数据,被我说了一顿,明明有DMA资源,竟然放着不用,对于鱼鹰这种性能强迫症来说,肯定无法忍受,所以当时就和他说,有时间你把它改一下。谁知道过了好几个月他才有时间弄这个,然后还是出了问题,...

关键字: DMA 串口

串行通讯是指仅用一根接收线和一根发送线就能将数据以位进行传输的一种通讯方式。尽管串行通讯的比按字节传输的并行通信慢,但是串口可以在仅仅使用两根线的情况下就能实现数据的传输。

关键字: 串口 串行通信

在下述的内容中,小编将会对手把手教大家如何去实现RA UART实现串口波特率自适应,如果串口波特率自适应内容是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 串口 波特率 UART
关闭