当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:多功能电能表在配电系统中应用广泛,其计量的准确度对企业管理和考核至关重要,因此在设计多功能电能表时需要对其进行校准,满足一定应用等级。常规的多功能电能表校准方法是以电能脉冲校准为主,现提出一种基于C#和功率校表法的多功能电能表校准软件设计思路,采用串口进行通信,波特率可配置,同时可校准多台多功能电能表,最多可同时支持28块多功能电能表,通过校准后多功能电能表精度可达0,2级。

引言

电能作为应用最广泛的能源之一,其计量和统计的终端设备为电能表,电能表计量的准确性对企业生产管理及用能考核有较大影响,并且随着碳达峰和碳中和概念的提出,合理用电、精确监控用电和挖掘节能点成为未来企业一个重要工作环节。本文针对多功能电能表的计量校准软件,提出基于C#平台,结合功率校表方法,设计一款适用于多台多功能电能表的校准软件,硬件上采用Rs485通信,波特率2200~38400bps可选,同时最多可校准18块多功能电能表,通过基准源输出标准的电源参数和多功能电能表的示值进行对比,计算增益校正寄存器、相位校正寄存器和偏差校正寄存器的值,通过串口写入计算后的值完成校准,经过校准后多功能电能表与基准源误差较小。

1多功能电能表硬件电路

多功能电能表硬件上采用ARM处理器作为主控制器,采用电量计量芯片处理计算电参数。主控制器型号为GD32F303RCT6,该处理器具有32位高性能精简指令集CPU,处理能力高达250MIPs,自带单周期的DsP指令,GD32F303RCT6片上F1ash为256kb,RAM为48kb,具有丰富的外设资源,多达3个UsART+2个UART,3路sPI,2路sDIO,2路CAN总线,16通道ADC。电量计量芯片型号为RN8302B,该芯片带有7路ADC通道,实现三相电压、电流及零线电流的采集。除了常规的电能脉冲校表法外,RN8302B芯片还支持功率校表法。

ARM处理器主要负责读取、显示、存储参数以及通信,计量芯片负责电量参数的计算,处理器与计量芯片采用sPI协议进行通信,通信速率可达3,5Mbps。多功能电能表硬件电路如图1和图2所示,电压通道采用电阻分压方式,电流通道采用互感器方式,电流通道和电压通道均采用差分输入,以提高抗干扰能力。

基于C#的多功能电能表校准软件设计

RN8302B芯片提供多种电参数,包括全波、基波有功电能和无功电能及视在电能,全波、基波有功功率和无功功率及视在功率,全波、基波和谐波电流/电压有效值等,处理器只需按照sP1协议读取计量芯片参数的地址,即可获得电量参数。另外,RN8302B芯片支持各种配置,包括增益、接线方式、阈值、校正等,同时RN8302B芯片还提供多种状态寄存器,用于指示RN8302B芯片的工作运行状态。

2校准平台软件设计

硬件电路设计完成后,需要开发对应的程序,驱动计量芯片、液晶显示屏工作及存储、通信。当下位程序开发完成后,多功能电能表基本可以工作,但其显示的数值与实际的真实值存在一些误差,需要开发上位程序对其进行校准。本文采用C#作为上位程序开发平台,利用多功能电能表的通信接口读取仪表的示值,计算各校正寄存器的值,通过通信接口下发到仪表,写入对应的寄存器,完成校准。

2.1功率校表

RN8302B芯片支持功率校准模式,利用标准源输出三相电压和电流,计算有效值的理论值与仪表的示值进行对比,假设电压额定输入Un时,芯片电压通道输入端电压有效值为Vu,理论计算值为U理论,经MCU转换LCD显示值为U示值,标准的电压有效值寄存器值为U标准,则U标准选择应满足下列条件:

条件(2)保证U通道增益校正在一个合理范围,条件(2)中K的选取应方便MCU将有效值寄存器值转换成LCD显示值。电流通道与电压相似,计算增益寄存器的值、相位和偏差寄存器的值,写入计算值即可。

功率校表法流程图如图3所示。

2.2软件设计

在C#开发平台中,根据功能选择控件,搭建软件显示界面,需要的控件有按钮、字符显示、串口、时钟、日历、下拉列表框等。搭建的显示界面如图4所示。

图4校准软件界面

选择串口下拉列表,选择对应的串口号,选择波特率下拉列表,选择合适的波特率,输入标准源输出的电压与电流参数,点击"读取"按钮,读取各仪表的显示值,软件对应地计算相应仪表的校正寄存器值,最后点击"发送",将校正寄存器值通过串口下发到各仪表并写入寄存器内,完成校准。从图4可以看出,通过校准后,4块仪表显示值与标准源输入误差很小。

3结语

在基于ARM处理器和计量芯片,利用功率校表技术,结合C#软件开发的校表平台校正后,多功能电能表的精度大幅提高,为各类仪表行业校准提供了一种新的思路和实现方式。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭