当前位置:首页 > 单片机 > 单片机
[导读] RS485总线是工业应用中非常成熟的技术,是现代通信技术的工业标准之一。RS485总线用于多站互连十分方便,用一对双绞线即可实现,采用平衡发送和差分接收,即在发送端驱动器将TTL电平信号转换成差分信号

RS485总线是工业应用中非常成熟的技术,是现代通信技术的工业标准之一。RS485总线用于多站互连十分方便,用一对双绞线即可实现,采用平衡发送和差分接收,即在发送端驱动器将TTL电平信号转换成差分信号输出,在接收端接收器将差分信号变成TTL电平,因此具有抗共模干扰的能力。根据RS485标准,传送数据速率达100 kb/s时通信距离可达1200 m。

RS485在嵌入式系统中的应用非常广泛。嵌入式系统可以通过RS485接口来控制终端设备。由于RS485是半双工模式,因此发送和接收的方向切换需要我们的关注和研究。如果方向切换方式选择不好可能会导致RS485驱动能力下降、软件执行效率下降,甚至导致系统异常等问题。

本文分别给出硬件实现RS485方向切换和软件实现RS485方向切换两种方式。两种方式各有优点,硬件方式控制起来比较简单。软件方式的驱动能力更好,但是和嵌入式平台关系比较密切,不同的平台都需要调试和验证。


1 硬件方式控制RS485方向


图1所示为硬件控制RS485的电路图。电路中使用2N7002LT1G MOS场效晶体管把UART_TXD_485这个MCU输出的RS485发送信号逻辑取反后送给RS485芯片的RE/DEPIN脚。控制的原理是,当UART_TXD_485输出低电平时RS485芯片的DE使能;输出高电平时RE使能。默认情况下UART_TXD_485是高电平,RS485芯片处于接收状态。发送数据时,UART_TXD_485上面有高低电平信号变化,低电平信号通过RS485芯片SP3072EENL/TR直接输出,高电平信号通过外部上下拉电阻来控制。

  

但是这种方法的缺点是驱动能力可能不足,由于这种控制方法没有完全发挥出RS485驱动芯片自身的驱动能力,输出信号依赖于外部上下拉电阻,因此在复杂环境下,譬如很多负载需要控制时,就会存在驱动能力不足的问题。但是在一些简单的环境或者软件实现较复杂的平台下,使用这种方法还是切实可行的。

  

图1 硬件控制RS485电路图


2 软件方式控制RS485方向


2.1 驱动能力分析


在复杂的RS485控制环境下,用上面介绍的硬件方式来控制RS485的方向会存在比较突出的驱动能力不足的问题。修改上述控制方法,将TTL这一侧的2线控制改为3线控制,就是将收发控制信号不用当前的/TXD来控制,而从主控分出一根GPIO线来控制收发。

  

其驱动能力提高了25~50倍(不同厂家不同型号有差异),如果辅以终端电阻灵活配置的措施,RS485的驱动能力将完全不是问题。表1是两种控制方式驱动能力的对比。


2.2 软硬件环境

  


图2 软件控制方法中的硬件设计


软件控制方法采用图2的硬件设计,图中很突出的修改是使用MCU的GPIO来控制RE和DE.RS485芯片的供电采用5 V供电,提高驱动能力。RS485芯片的RE和DE控制使用MCU的GPIO输出高低电平来控制。简单来说就是,在RS485进行数据传输时,通过GPIO来控制传输方向。这里采用的MCU是TI公司的DM8168处理器来实现软件的RS485切换功能。软件版本使用UBoot2010.06和linux2.6.37。用软件来实现RS485的收发,尽量要保证执行效率;要达到上面的目的就需要对串口驱动进行调试,使用串口驱动用到的软件资源和串口控制器本身的硬件资源来实现RS485的控制。


表1 软件和硬件控制方式驱动能力的对比

  


2.3 UBoot代码修改


需要修改的文件:

  ① board/ti/ti8168/evm.c

  ② drivers/serial/ns16550.c

  ③ include/configs/ti8168_evm.h

  ti8168_evm.h文件中增加切换宏定义:

  #define CONFIG_RS485_DIR_SW 1

  evm.c文件中增加切换函数:

  void rs485_dir_sw(int rs485_dir){

  if (rs485_dir ==0)

  _raw_writel(RS485_DIR_MASK, TI81XX_GPIO1_CLEARDATAOUT);

  else

  _raw_writel(RS485_DIR_MASK, TI81XX_GPIO1_SETDATAOUT);

  }

  s16550.c串口驱动文件中增加RS485方向控制:

  void NS16550_putc(NS16550_t com_port, char c){

  #ifdef CONFIG_RS485_DIR_SW

  rs485_dir_sw(1);

  #endif

  ……//此处代码省略

  #ifdef CONFIG_RS485_DIR_SW

  while((serial_in(&com_port->lsr) & UART_LSR_TEMT) == 0)

  rs485_dir_sw(0);

  #endif

  }


其中UART_LSR_TEMT表示发送BUF和移位寄存器为空。默认情况下RS485是接收状态,一旦要发送数据,就把RS485切换为发送状态。发送完数据后,等待发送BUF和移位寄存器为空,然后切换回接收状态,这里无需使用timeout。



2.4 Linux代码修改

需要修改的文件:

  ① arch/arm/machomap2/bordti8168evm.c

  ② drivers/serial/omapserial.c

  ③ include/linux/serial_core.h



serial_core.h文件,UART_port结构体中增加set_rs485_direction函数指针,用于执行RS485的方向切换void (*set_rs485_direction)(int rs485_dir);原本考虑在uart_ops结构体中增加的,但是这个结构体是常量类型,对它不作改动,因此加到了uart_port结构体中。在该文件中添加相关宏定义和函数指针类型用于函数注册:

  #define SET_RS485_RX0

  #define SET_RS485_TX1

  typedef void (*set_rs485_direction_t)(int rs485_dir);//用于函数注册

  omapserial.c文件主要做了如下几点改动:

  ① 添加omap_rs485_dir_fun全局的函数指针。

  statICset_rs485_direction_t omap_rs485_dir_fun[OMAP_MAX_HSUART_PORTS]={NULL, NULL, NULL, NULL, NULL, NULL}

  ② 外部驱动利用omap_rs485_dir_fun_reg注册函数对omap_rs485_dir_fun进行赋值。

  void omap_rs485_dir_fun_reg(int port_num, set_rs485_direction_t rs485_dir_fun){

  if (port_num>=OMAP_MAX_HSUART_PORTS)

  printk(KERN_ERR “%s, port_num error max is %d, but %d \n”, __FUNCTION__, OMAP_MAX_HSUART_PORTS-1, port_num);

  omap_rs485_dir_fun[port_num]= rs485_dir_fun;

  }

  EXPORT_SYMBOL(omap_rs485_dir_fun_reg);

  ③ serial_omap_probe函数中对控制程序中用到的up->port.set_rs485_direction进行赋值。

  up->port.set_rs485_direction= omap_rs485_dir_fun[pdev->id];

  ④ 默认情况下RS485处于接收状态。

  ⑤ serial_omap_enable_ier_thri函数中把RS485切换为发送状态。

  static incline void serial_omap_enable_ier_thri(struct uart_omap_port *up){

  if (!(up->ier & UART_IER_THRI)) {

  /* rs485 dir change to tx */

  if (up->port.set_rs485_direction != NULL)

  up->port.set_rs485_direction(SET_RS485_TX);

  ……//此处代码省略

  }

  }

  ⑥ serial_omap_stop_tx函数中把RS485切换为接收状态。

  static void serial_omap_stop_tx(struct uart_omap_port *port){

  ……//此处代码省略

  if (up->ier & UART_IER_THRI) {

  up->ier &= ~UART_IER_THRI;

  serial_out(up, UART_IER, up->ier);

  /* rs485 dir change to rx */

  if (port->set_rs485_direction != NULL)

  port->set_rs485_direction(SET_RS485_RX);

  }

  }

  ⑦ transmit_chars更改一下,原先的代码是当没有更多的字符要发送(环形缓冲为空)时需要关闭发送中断,这时串口控制器发送BUF和移位寄存器中还是有数据的,这些数据串口控制器自动发送完成后才算结束,由于已经关闭了发送中断,因此发送结束后就没有中断产生了。但是RS485切换方向需要等到完全发送完成后才能进行。因此对transmit_chars函数做了修改。调用serial_omap_stop_tx函数前判断发送BUF和移位寄存器是否为空,如果为空就可以切换方向了。简而言之,延后了发送中断的关闭时间。

  static void transmit_chars(struct uart_omap_port *up){

  ……//此处代码省略

  if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) {

  if (up->port.ops->tx_empty(&up->port)==0)

  return;//added for last transmit

  serial_omap_stop_tx(&up->port);

  return;

  }

  ……//此处代码省略

  if (uart_circ_empty(xmit)) {

  if (up->port.ops->tx_empty(&up->port)==0)

  return;//added for last transmit

  serial_omap_stop_tx(&up->port);

  }

  }

  ⑧ arch/arm/machomap2/boardti8168evm.c文件在ti8168_evm_init函数中调用omap_rs485_dir_fun_reg函数注册RS485切换函数。

  2.5 实验结果分析

  上述软件修改有如下几个优点:不增加硬件开销;不增加和使用任何硬件资源;不增加软件开销;不影响软件执行效率;硬件控制是电信号控制,方向切换和TX绑定;软件控制是整个发送缓冲区完成发送后再进行方向切换,控制实现上更加合理。

  对软件切换RS485做了基本的测试,情况如下:

  ① 控制台操作。整个启动打印信息正常。UBoot和Kernel下控制效果和硬件控制一样,可以很流畅地进行命令的输入和回显,串口终端增加输入字符间的延时后可以进行配置的粘贴。内核在115 200和38 400下分别进行测试OK。

  ② 内核下加大负责进行大数据量的发送。增加负载,开多个PINg包进程(产生大量中断)、Nand Flash的操作、CPU占有率接近100%条件下,通过RS485输出大量数据,没有乱码,校验OK。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在工业物联网设备部署中,Modbus通信故障是导致系统停机的首要原因之一。据统计,超过60%的现场问题源于通信配置错误或数据解析异常。本文从嵌入式系统开发视角,系统阐述Modbus通信调试的方法论,结合实际案例解析如何高...

关键字: 嵌入式系统 Modbus通信

在嵌入式系统开发中,看门狗(Watchdog Timer, WDT)是保障系统可靠性的核心组件,其初始化时机的选择直接影响系统抗干扰能力和稳定性。本文从硬件架构、软件流程、安全规范三个维度,系统分析看门狗初始化的最佳实践...

关键字: 单片机 看门狗 嵌入式系统

人工智能(AI)和机器学习(ML)是使系统能够从数据中学习、进行推理并随着时间的推移提高性能的关键技术。这些技术通常用于大型数据中心和功能强大的GPU,但在微控制器(MCU)等资源受限的器件上部署这些技术的需求也在不断增...

关键字: 嵌入式系统 人工智能 机器学习

Zephyr开源项目由Linux基金会维护,是一个针对资源受限的嵌入式设备优化的小型、可缩放、多体系结构实时操作系统(RTOS)。近年来,Zephyr RTOS在嵌入式开发中的采用度逐步增加,支持的开发板和传感器不断增加...

关键字: 嵌入式系统 软件开发 实时操作系统 Zephyr项目

在资源受限的嵌入式系统中,代码执行效率和内存占用始终是开发者需要权衡的核心问题。内联函数(inline functions)和宏(macros)作为两种常见的代码展开技术,在性能、可维护性和安全性方面表现出显著差异。本文...

关键字: 内联函数 嵌入式系统

在嵌入式系统和服务器开发中,日志系统是故障排查和运行监控的核心组件。本文基于Linux环境实现一个轻量级C语言日志库,支持DEBUG/INFO/WARN/ERROR四级日志分级,并实现按大小滚动的文件轮转机制。该设计在某...

关键字: C语言 嵌入式系统

在嵌入式系统和底层驱动开发中,C语言因其高效性和可控性成为主流选择,但缺乏原生单元测试支持成为开发痛点。本文提出一种基于宏定义和测试用例管理的轻量级单元测试框架方案,通过自定义断言宏和测试注册机制,实现无需外部依赖的嵌入...

关键字: C语言 嵌入式系统 驱动开发

在嵌入式系统与驱动开发中,内存映射I/O(Memory-Mapped I/O, MMIO)是一种将硬件寄存器映射到处理器地址空间的技术,允许开发者通过指针直接读写寄存器,实现高效、低延迟的硬件控制。本文通过C语言实战案例...

关键字: 内存映射 I/O操作 嵌入式系统

在嵌入式系统开发和多线程编程中,程序崩溃、内存越界等复杂问题常令开发者困扰。GDB作为强大的调试工具,其条件断点和内存查看功能可精准定位隐蔽缺陷。本文通过实际案例演示这些高级功能的应用,帮助开发者提升调试效率。

关键字: GDB 嵌入式系统
关闭