当前位置:首页 > 单片机 > 单片机
[导读]首先,先来看一下这个模块的基本功能和原理。HC-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。像智能小车的测距以及转向,或是一些项目

首先,先来看一下这个模块的基本功能和原理。

HC-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。像智能小车的测距以及转向,或是一些项目中,常常会用到。智能小车测距可以及时发现前方的障碍物,使智能小车可以及时转向,避开障碍物。

注意是5v输入,但是我用stm32 的3.3v输入也是没有问题的。

二.工作原理

1.给超声波模块接入电源和地。
2.给脉冲触发引脚(trig)输入一个长为20us的高电平方波

3.输入方波后,模块会自动发射8个40KHz的声波,与此同时回波引脚(echo)端的电平会由0变为1;(此时应该启动定时器计时)
4.当超声波返回被模块接收到时,回波引脚端的电平会由1变为0;(此时应该停止定时器计数),定时器记下的这个时间即为超声波由发射到返回的总时长。
5.根据声音在空气中的速度为344米/秒,即可计算出所测的距离。

要学习和应用传感器,学会看懂传感器的时序图是很关键的,所以我们来看一下HC-SR04的时序触发图。

我们来分析一下这个时序图,先由触发信号启动HC-RS04测距模块,也就是说,主机要先发送至少10us的高电平,触发HC-RS04,模块内部发出信号是传感器自动回应的,我们不用去管它。输出回响信号是我们需要关注的。信号输出的高电平就是超声波发出到重新返回接收所用的时间。用定时器,可以把这段时间记录下来,算出距离,别忘了结果要除于2,因为总时间是发送和接收的时间总和。

下面是亲测可用的驱动程序。

芯片型号为stm32f103zet6,超声波测距后通过串口打印到电脑上面。

驱动和测距;


//超声波测距

#include"hcsr04.h"

#defineHCSR04_PORTGPIOB

#defineHCSR04_CLKRCC_APB2Periph_GPIOB

#defineHCSR04_TRIGGPIO_Pin_5

#defineHCSR04_ECHOGPIO_Pin_6

#defineTRIG_SendPBout(5)

#defineECHO_ReciPBin(6)

u16msHcCount=0;//ms计数

voidHcsr04Init()

{

TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;//生成用于定时器设置的结构体

GPIO_InitTypeDefGPIO_InitStructure;

RCC_APB2PeriphClockCmd(HCSR04_CLK,ENABLE);

//IO初始化

GPIO_InitStructure.GPIO_Pin=HCSR04_TRIG;//发送电平引脚

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;//推挽输出

GPIO_Init(HCSR04_PORT,&GPIO_InitStructure);

GPIO_ResetBits(HCSR04_PORT,HCSR04_TRIG);

GPIO_InitStructure.GPIO_Pin=HCSR04_ECHO;//返回电平引脚

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING;//浮空输入

GPIO_Init(HCSR04_PORT,&GPIO_InitStructure);

GPIO_ResetBits(HCSR04_PORT,HCSR04_ECHO);

//定时器初始化使用基本定时器TIM6

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6,ENABLE);//使能对应RCC时钟

//配置定时器基础结构体

TIM_DeInit(TIM2);

TIM_TimeBaseStructure.TIM_Period=(1000-1);//设置在下一个更新事件装入活动的自动重装载寄存器周期的值计数到1000为1ms

TIM_TimeBaseStructure.TIM_Prescaler=(72-1);//设置用来作为TIMx时钟频率除数的预分频值1M的计数频率1US计数

TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;//不分频

TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;//TIM向上计数模式

TIM_TimeBaseInit(TIM6,&TIM_TimeBaseStructure);//根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位

TIM_ClearFlag(TIM6,TIM_FLAG_Update);//清除更新中断,免得一打开中断立即产生中断

TIM_ITConfig(TIM6,TIM_IT_Update,ENABLE);//打开定时器更新中断

hcsr04_NVIC();

TIM_Cmd(TIM6,DISABLE);

}

//tips:static函数的作用域仅限于定义它的源文件内,所以不需要在头文件里声明

staticvoidOpenTimerForHc()//打开定时器

{

TIM_SetCounter(TIM6,0);//清除计数

msHcCount=0;

TIM_Cmd(TIM6,ENABLE);//使能TIMx外设

}

staticvoidCloseTimerForHc()//关闭定时器

{

TIM_Cmd(TIM6,DISABLE);//使能TIMx外设

}

//NVIC配置

voidhcsr04_NVIC()

{

NVIC_InitTypeDefNVIC_InitStructure;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

NVIC_InitStructure.NVIC_IRQChannel=TIM6_IRQn;//选择串口1中断

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;//抢占式中断优先级设置为1

NVIC_InitStructure.NVIC_IRQChannelSubPriority=0;//响应式中断优先级设置为1

NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;//使能中断

NVIC_Init(&NVIC_InitStructure);

}

//定时器6中断服务程序

voidTIM6_IRQHandler(void)//TIM3中断

{

if(TIM_GetITStatus(TIM6,TIM_IT_Update)!=RESET)//检查TIM3更新中断发生与否

{

TIM_ClearITPendingBit(TIM6,TIM_IT_Update);//清除TIMx更新中断标志

msHcCount++;

}

}

//获取定时器时间

u32GetEchoTimer(void)

{

u32t=0;

t=msHcCount*1000;//得到MS

t+=TIM_GetCounter(TIM6);//得到US

TIM6->CNT = 0; //将TIM2计数寄存器的计数值清零

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭