当前位置:首页 > 单片机 > 单片机
[导读]80C51在物理结构上有四个存储空间:片内程序存储器、片外程序存储器、片内数据存储器和片外数据存储器。但在逻辑上,即从用户使用的角度上,80C51有三个存储空间:片内外统一编址的64KB的程序存储器地址空间(用16位

80C51在物理结构上有四个存储空间:片内程序存储器、片外程序存储器、片内数据存储器和片外数据存储器。但在逻辑上,即从用户使用的角度上,80C51有三个存储空间:片内外统一编址的64KB的程序存储器地址空间(用16位地址)、256B的片内数据存储器的地址空间(用8位地址,其中128B的专用寄存器地址空间仅有21个字节有实际意义)以及64KB片外存储器地址空间。

1、程序存储器

程序存储器用于存放编好的程序和表格常数。80C51片内有4KB ROM,片外16位地址线最多可扩展64KB ROM,两者是统一编址的。如果EA端保持高电平,80C51的程序计数器PC在0000H——0FFFH范围内(即前4KB地址)是执行片内ROM的程序。当寻址范围在1000H——FFFFH时,则从片外存储器取指令。当EA端保持低电平时,80C51的所有取指令操作均在片外程序存储器中进行,这时片外存储器可以从0000H开始编址。

程序存储器中,以下6个单元具有特殊功能。

0000H:80C51复位后,PC=0000H,即程序从0000H开始执行指令。

0003H:外部中断0入口。

000BH:定时器0溢出中断入口。

0013H:外部中断1入口。

001BH:定时器1溢出中断入口。

0023H:串行口中断入口。

2、数据存储器

数据存储器用于存放中间运算结果、数据暂存和缓冲、标志位等。80C51片内有256B RAM,片外最多可扩充64KB RAM,构成了两个地址空间。

片内数据存储器为8位地址,最大可寻址256个单元,片内低128B(及00H~7FH)的地址区域为片内RAM,对其访问可采用直接寻址和间接寻址的方式。高128B地址区域(即80H~FFH)为专用寄存器区,只能采用直接寻址方式。

在低128B RAM区中,00H~1FH地址为通用工作寄存器区,共分为4组,每组由8个工作寄存器(R0~R7)组成,共占用32个单元。下表为工作寄存器的地址表。每组寄存器均可选作CPU当前的工作寄存器,通过对程序状态字PSW中RS1、RS0的设置来决定CPU当前使用哪一组。若程序中并不需要4组,那么其余的可用做一般的数据缓冲器。CPU在复位后,选中第0组工作寄存器。

RS1

RS0

R0

R1

R2

R3

R4

R5

R6

R7

0

0

0

00H

01H

02H

03H

04H

05H

06H

07H

1

0

1

08H

09H

0AH

0BH

0CH

0DH

0EH

0FH

2

1

0

10H

11H

12H

13H

14H

15H

16H

17H

3

1

1

18H

19H

1AH

1BH

1CH

1DH

1EH

1FH

工作寄存器区后的16B(即20H~2FH)可用位寻址方式访问其各个位,这128个位的位地址(位地址指的是某个二进制位的地址)为00H~7FH,它们可用做软件标志位或用于1位(布尔)处理。

3、专用寄存器SFR

80C51有21个专用寄存器SFR,亦称特殊功能寄存器。它们离散地分布在片内数据存储器的高128 B地址80H~FFH中,访问这些专用寄存器仅允许使用直接寻址的方式。专用寄存器并未占满80H~FFH整个地址空间,对空闲地址的操作是无意义的,若访问到空闲地址,则读出的是随机数。

在21个专用寄存器中有11个专用寄存器具有位寻址能力,它们的字节地址正好能被8整除。

注意:由于SFR是离散地分布在片内数据存储器的高128 B地址80H~FFH中,因此,当定义的数据长度大于128 B字节时,有可能会与某些SFR的地址冲突,导致意想不到的结果,所以,应当尽量把数据控制在128 B之内,特别是数组,如果数据量比较大,可以使用xdata,定义到外部ram中。

如:

unsigned charxdata gTagId[2500*11] _at_ 0x0000;//定义数组gTagId,此数据存放在外部ram中,规定其起始地址为0x0000。

unsigned short xdata gTagIdNum;//定义数据gTagIdNum。

注意以下定义的区别:

unsigned char * xdata pWriteTagId;//定义指针,此指针存放在外部ram中,此指针指向的数据类型为unsigned char。

unsigned char xdata *pWriteTagId;//定义指针,此指针存放在内部ram中,此指针指向的数据存放在外部ram中,类型为unsigned char。

unsigned char xdata * xdata pWriteTagId;//定义指针,此指针存放在外部ram中,此指针指向的数据也存放在外部ram中,类型为unsigned char。

对于外部ram的使用,只要硬件把相应的引脚连接好之后,软件不需要进行任何设置,直接使用xdata进行访问即可。

关于对51单片机内存的认识

对51单片机内存的认识,很多人有误解,最常见的是以下两种

①超过变量128后必须使用compact模式编译。

实际的情况是只要内存占用量不超过256.0就可以用small模式编译。

②128以上的某些地址为特殊寄存器使用,不能给程序用。

与PC机不同,51单片机不使用线性编址,特殊寄存器与RAM使用重复的地址,但访问时采用不同的指令,所以并不会占用RAM空间。

由于内存比较小,一般要进行内存优化,尽量提高内存的使用效率。

以Keil C编译器为例,small模式下未指存储类型的变量默认为data型,即直接寻址,只能访问低128个字节,但这128个字节也不是全为我们的程序所用,寄存器R0-R7必须映射到低RAM,要占去8个字节,如果使用寄存组切换,占用的更多。

所以可以使用data区最大为120字节,超出120个字节则必须用idata显式的指定为间接寻址,另外堆栈至少要占用一个字节,所以极限情况下可以定义的变量可占247个字节。当然,实际应用中堆栈为一个字节肯定是不够用的,但如果嵌套调用层数不深,有十几个字节也够有了。

为了验上面的观点,写了个例子(测试环境为XP + Keil C 7.5)。

#define LEN 120
data unsigned chartt1[LEN];
idata unsigned char tt2[127];

void main()
{
unsigned chari, j;

for(i = 0; i < LEN; ++i )
{
j = i;
tt1[j] = 0x55;
}
}

可以计算R0-7(8) + tt1(120) + tt2(127) + SP(1)总共256个字节

keil编译的结果如下:
Program Size: data=256.0 xdata=0 code=30
creating hex file from "./Debug/Test"...
"./Debug/Test" - 0 Error(s), 0 Warning(s).

这段代码已经达到了内存分配的极限,再定义任何全局变量或将数组加大,编译都会报错107,这里要引出一个问题:为什么变量i、j不计算在内?这是因为i、j是局部变量,编译器会试着将其优化到寄存器Rx或栈。问题也就在这了,如果局部变量过多或定义了局部数组,编译器无法将其优化,就必须使用RAM空间,虽然全局变量的分配经过精心计算没有超出使用范围,仍会产生内存溢出的错误!而编译器是否能成功的优化变量是根据代码来的。
上面的代码中,循环是臃肿的,变量j完全不必要,那么将代码改成

unsigned char i;
unsigned char j;

for(i = 0; i < LEN; ++i )
{
tt1[i] = 0x55;
}

再编译看看,出错了吧!因为编译器不知道该如何使用j,所以没能优化,j须占RAM空间,RAM就溢出了。(智能一点的编译器会自动将这个无用的变量去掉,但这个不在讨论之列了)。

另外,对idata的定义的变量最好放在data变量之后。

对于这一种定义:

unsigned char c1;
idata unsigned char c2;
unsigned char c3;
变量c2肯定会以间接寻址,但它有可能落在data区域,就浪费了一个可直接寻址的空间。

变量优化一般要注意几点:

①让尽可能多的变量使用直接寻址,提高速度。
假如有两个单字节的变量和一个长119的字符型数组,因为总长超过120字节,不可能都定义在data区。
按这条原则,定义的方式如下:

data unsigned char tab[119];
data unsigned char c1;
idata unsigned char c2;
但也不是绝的,如果c1, c2需要以极高的频率访问,而tab访问不那么频繁
则应该让访问量大的变量使用直接寻址:

data unsigned char c1;
data unsigned char c2;
idata UCHAR tab[119];
这个是要根据具体项目需求来确定的

②提高内存的重复利用率
就是尽可能的利用局部变量,局部变量还有个好处是访问速度比较快,由前面的例子可以看出,局部变量i, j是没有单独占用内存的,子程序中使用内存数目不大的变量尽量定义为局部变量。

③对于指针数组的定义,尽可能指明存储类型,尽量使用无符号类型变量,一般指针需要一个额外的字节指明存储类型,8051系列本身不支持符号数,需要外加库来处理符号数,一是大大降低程序运行效率,二是需要额外的内存。

④避免出现内存空洞

可以通过查看编译器输出符号表文件(.M51)查看
对前面的代码,M51文件中关于内存一节如下:

* * * * * * * D A T A M E M O R Y * * * * * * *
REG 0000H 0008H ABSOLUTE "REG BANK 0"
DATA 0008H 0078H UNIT?DT?TEST
IDATA 0080H 007FH UNIT?ID?TEST
IDATA 00FFH 0001H UNIT?STACK

第一行显示寄存器组0从地址0000H

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

无论您是在研究如何使用 10GigE 还是寻求所需考虑事项的建议,本文均提供有实践,帮助确保单相机 10GigE 视觉系统设置顺利并拥有良好性能。 我们列出了主机系统配置、布线和相机设置的实践。

关键字: 视觉系统 CPU 存储器

存储器是计算机系统中的关键组件,负责存储程序指令和数据,是实现计算和信息处理的基础。根据其工作原理、存储容量、访问速度、稳定性以及持久性等诸多特性,存储器可以被细分为多个类别。本篇文章将详细介绍存储器的主要分类,并探讨各...

关键字: 存储器 RAM

Apr. 03, 2024 ---- 4月3日7时58分在台湾花莲县海域(北纬23.81度,东经121.74度)发生7.3级地震,震源深度12千米。根据全球市场研究机构TrendForce集邦咨询于第一时间调查各厂受损及...

关键字: 存储器 晶圆代工

2024年3月26日,中国-- 服务多重电子应用领域、全球排名前列的半导体公司意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)发布了一项基于 18 纳米全耗尽绝缘体上硅(FD-SO...

关键字: 处理器 微控制器 存储器

该产品线提供了并行SRAM的低成本替代方案,容量高达 4 Mb,具有143 MHz SPI/SQI™通信功能

关键字: SRAM 存储器 MCU

【2024年1月15日,德国慕尼黑讯】卫星上的边缘计算和推理可实现近乎实时的数据分析和决策制定。随着联网设备的数量及其产生的数据量不断增长,这一点变得愈发重要。为满足太空应用中的这些高性能计算需求,英飞凌科技股份公司(F...

关键字: 存储器 嵌入式 边缘计算

可编程逻辑控制器(PLC,Programmable Logic Controller)是一种专为工业环境设计的数字电子系统。它使用可编程的存储器,内部存储程序,执行逻辑运算、顺序控制、定时、计数和算术操作等面向用户的指令...

关键字: 可编程逻辑控制器 数字电子系统 存储器

Jan. 11, 2024 ---- 根据TrendForce集邦咨询表示,全球受高通胀冲击,2023年笔电市场需求欲振乏力,全年出货量仅1.66亿台,年减10.8%,但衰退幅度较2022年收敛。

关键字: AI 笔电 存储器

可编程逻辑控制器(PLC)是一种工业自动化控制装置,它采用可编程的存储器来存储指令,执行逻辑运算、顺序控制、计数、定时和算术操作等面向用户的指令,并通过模拟或数字输入/输出控制各种类型的机械或生产过程。PLC的基本原理可...

关键字: 可编程逻辑控制器 自动化 存储器

Jan. 8, 2024 ---- TrendForce集邦咨询表示,2024年第一季DRAM合约价季涨幅约13~18%,其中Mobile DRAM持续领涨。目前观察,由于2024全年需求展望仍不明朗,故原厂认为持续性减...

关键字: DRAM 存储器 智能手机
关闭
关闭