当前位置:首页 > 单片机 > 单片机
[导读]下面我们以ARM Cortex-M0内核单片机LPC1114的头文件lpc11xx.h文件进行说明。1.先说两句lpc11xx.h文件是lpc11xx系列单片机包含的头文件。这个文件的作用和51单片机中的reg51.h头文件是一个性质,都是用来定义寄存器在

下面我们以ARM Cortex-M0内核单片机LPC1114的头文件lpc11xx.h文件进行说明。

1.先说两句

lpc11xx.h文件是lpc11xx系列单片机包含的头文件。这个文件的作用和51单片机中的reg51.h头文件是一个性质,都是用来定义寄存器在单片机中的地址的。

你现在就可以打开reg51.h文件和lpc11xx.h文件看看,对比后你会发现两个主要的区别,首先是lpc11xx.h文件的寄存器定义是用结构体的形式,而reg51.h文件中,寄存器的定义都是一条一条的很直接的地址定义。然后是reg51.h文件中有sfr这样的“伪c语言”,而lpc11xx.h中用的是标准的c语言。C语言的最大用武之地就是单片机,要想学c,就在单片机上学,要想学单片机,就先入门c语言。两者相辅相成的学,效果最好。学以致用,才是学习的最终目标。

2.lpc11xx.h文件中如何定义寄存器地址?

在文件中,定义寄存器地址用到了一下几方面的c语言基础知识:

结构体;

结构体指针;

宏定义#define

关键字typedef

关键字volatile

关键字const

lpc11xx.h文件中,把每个模块都定义了一个结构体,这些模块有SYSCON、IOCON、UART、GPIO、SSP、I2C、WDT、ADC等。

例如,下面是ADC模块的结构体定义:

typedefstruct{__IOuint32_tCR;__IOuint32_tGDR;uint32_tRESERVED0;__IOuint32_tINTEN;__IOuint32_tDR[8];__Iuint32_tSTAT;}LPC_ADC_TypeDef;

结构体的定义有三种形式,我们这里使用的是“直接说明变量”的形式。

lpc11xx.h文件的第566~584行,给每个模块的结构体变量定义了结构体指针,并加了宏定义#define,为的是以后写程序时书写方便。

把鼠标放到uint32_t上面,单击鼠标右键,在弹出的菜单中选择“Go To Definition Of ‘uint32_t’”,如下图所示:

选择后,就会跳到它的定义之处,如下图所示:

typedef是类型重定义关键字,所以实际上,CR寄存器的定义是这样的:

__IOunsignedintCR;

按照同样的方法,可以找到__IO的定义为:

所以,CR寄存器定义实际上是:

volatileunsignedintCR;

volatile关键字的作用是为了让编译器不要优化这个变量。

unsigned int关键字,用来定义无符号的整形变量。

这时候,有人会问,为什么不直接写成这样呢?答:为了阅读方便。

__IOuint32_tCR;

看到这条语句,我们就会知道,CR寄存器是一个“32位的可读可写寄存器”。

volatile unsigned int CR;

同样的这句话,我们对它的了解就不是那么一目了然了。

3.如何查看每个寄存器的地址?

上面讲到,寄存器的地址是由结构体和结构体指针定义的。现在我们来验证一下它的正确性。

我们随便找个寄存器,比如ADC模块的INTEN寄存器(ADC中断允许寄存器),打开LPC1114的用户手册,找到第25章ADC模块部分,如下图所示:

从上面图中,可以看到INTEN的寄存器的地址是0x4001C00C,接下来,我们打开lpc11xx.c文件来验证一下吧。

打开lpc11xx.c文件,找到ADC模块的结构体,如下图所示:

然后再找到LPC_ADC_TypeDef的结构体指针,如下所示:

结构体指针就是用来指向一个地址的,我们来看看上面语句中的LPC_ADC_BASE是什么:

再看看上条语句中的LPC_APB0_BASE是什么:

现在终于挖到底了,原来LPC_ADC_TypeDef指针指向的地址为:

0x40000000+0x1C000=0x4001C000

c语言基础知识:结构体的第一个变量的地址=结构体指针的地址。

所以结构体的第一个变量地址就是0x4001C000,INTEN前面有3个4字节的变量,所以INTEN的地址就是0x4001C00C。

验证完毕。

4.程序中,如何操作寄存器?

C语言基础知识:用结构体变量指针访问结构体中的变量,形式有两种:

*结构体指针变量.变量名

结构体指针变量->变量名

还是拿INTEN寄存器为例,假设我们要给这个寄存器写0x837,可以这样写:

*LPC_ADC.INTEN=0x837;

LPC_ADC->INTEN=0X837;

以上两种形式,在写程序的时候,都可以用。人们习惯用第二种形式。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

8位单片机在嵌入式设计领域已经成为半个多世纪以来的主流选择。尽管嵌入式系统市场日益复杂,8位单片机依然不断发展,积极应对新的挑战和系统需求。如今,Microchip推出的8位PIC®和AVR®单片机系列,配备了先进的独立...

关键字: 单片机 嵌入式 CPU

在嵌入式系统开发中,程序烧录是连接软件设计与硬件实现的关键环节。当前主流的单片机烧录技术已形成ICP(在电路编程)、ISP(在系统编程)、IAP(在应用编程)三大技术体系,分别对应开发调试、量产烧录、远程升级等不同场景。...

关键字: 单片机 ISP ICP IAP 嵌入式系统开发

在嵌入式系统开发中,看门狗(Watchdog Timer, WDT)是保障系统可靠性的核心组件,其初始化时机的选择直接影响系统抗干扰能力和稳定性。本文从硬件架构、软件流程、安全规范三个维度,系统分析看门狗初始化的最佳实践...

关键字: 单片机 看门狗 嵌入式系统

本文中,小编将对单片机予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 单片机 开发板 Keil

随着单片机系统越来越广泛地应用于消费类电子、医疗、工业自动化、智能化仪器仪表、航空航天等各领域,单片机系统面临着电磁干扰(EMI)日益严重的威胁。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。

关键字: 单片机 电磁兼容

ARM系统几乎都采用Linux的操作系统,而且几乎所有的硬件系统都要单独构建自己的系统,与其他系统不能兼容,这也导致其应用软件不能方便移植,这一点一直严重制约了ARM系统的发展和应用。GOOGLE开发了开放式的Andro...

关键字: Linux x86 ARM

随着计算需求的多样化,尤其是随着移动设备、嵌入式系统和云计算的兴起,ARM 和 x86 架构之间的争论变得更加突出。ARM(高级 RISC 机器)和 x86 代表两种不同类型的处理器架构,每种架构都针对不同的工作负载和用...

关键字: Linux x86 ARM

以下内容中,小编将对单片机的相关内容进行着重介绍和阐述,希望本文能帮您增进对单片机的了解,和小编一起来看看吧。

关键字: 单片机 复位电路

在这篇文章中,小编将为大家带来单片机的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 单片机 异常复位
关闭