当前位置:首页 > 通信技术 > 通信技术
[导读]摘要:首先讨论了在LTE FDD系统中的上行发射天线选择算法,然后分析了上行发射天线的各种选择方案,并提出一种上行发射天线的选择方法,最后给出该天线选择方案的性能分析。性能分析结果表明,使用该选择方法可以获得

摘要:首先讨论了在LTE FDD系统中的上行发射天线选择算法,然后分析了上行发射天线的各种选择方案,并提出一种上行发射天线的选择方法,最后给出该天线选择方案的性能分析。性能分析结果表明,使用该选择方法可以获得较大的分集增益。
关键词:LTE;选择算法;性能分析;分集增益

0 引言
    LTE FDD系统支持上行应用MIMO技术,包括空间复用和发射分集。在LTE FDD系统中应用MIMO技术的上行基本天线配置为1*2,即终端侧配置一根发射天线,基站侧配置两根接收天线。上行可以考虑支持更高阶的MIMO传输,但由于担心终端实现的复杂度过高,所以现阶段上行不支持一个终端同时使用两根发射天线,只考虑存在单元上行传输链的情况。因此,上行仅支持上行发射天线选择和多用户MIMO。

1 发射天线配置
    为了节省功率和降低射频开销,在终端侧期望使用更少数目的功放。另一方面,为了改善可达到的数据速率和提供更大范围的覆盖,需要使用天线选择技术。
    单输入、多输出(SIMO)方法(也常被称为接收分集技术)采用一个发射天线和两个或多个接收天线。与发射分集方法一样,它也很适合工作在低SNR条件下,当采用两个接收器时,理论上可实现3 dB增益。因为只发射一个数据流,所以数据速率不变。
    从图1中可以看出,第二个天线也有双工器,故存在一定的插入损耗。另外,天线选择器也存在插入损耗(约0.5~0.7 dB,即,约损失了11%~15%的能量)。


    基站根据一定的准则(上行信道状况、下行信道状况等)来指示UE使用哪一个发射天线来发射。

2 发射天线选择方案
    对于LTE FDD系统而言,存在两种发射天线选择方案,即开环天线选择和闭环天线选择。
2.1 开环天线选择方案
    上行共享数据信道在天线间交替发射,这样可以获得空间分集增益,从而避免共享数据信道的深陷落。在郊区、乡村、高速公路、地铁、高铁等场所建议使用开环天线选择。优点:
    (1)不需要发送用于天线选择的参考信号;
    (2)在下行不需要发送天线选择信息bit;
    (3)适合于基于竞争的信道和共享信道使用。
2.2 闭环天线选择方案
    终端必须从不同的天线发送参考信号,用于在基站侧提前进行信道质量测量。基站可以选择具有更高发射信号功率的天线,用于后续共享数据信道的传输。被选中的天线信息需要通过下行控制信道反馈给目标终端。优点:可以获得更大的分集增益。应用场所:密集城区基站、室内分布系统使用闭环天线选择(原因:UE低速运动、SINR高、信道较稳定)。

3 发射天线选择策略
3.1 随机选择
    例如,子帧号为偶数时使用Port0,子帧号为奇数时使用Port1。
3.2 根据各个天线的归一化之后的SINR来选择
    分别记录不同天线发射后的折算到相同单位RB发射功率下的宽带SINR。选SINR高的天线。各个天线各一个变量,新的SINR到达后覆盖老的SINR。
3.3 根据最近收到的PUSCH的CRC状况来选择
    在UE建立RRC连接之后就一直使用Port0直到收到一个错误的PUSCH(即,CRC错误),之后指定UE一直使用Port1直到收到又一个错误的PUSCH。即,只要PUSCH的CRC发生错误,就立即更换发射天线。
3.4 根据各个天线的BLER来选择
    分别记录一段时间内(如100ms)不同天线发射后的BLER。选BLER低的天线来发射。各个天线各一个变量,BLER的计算使用滑窗机制。
3.5 在使用“闭环天线选择”时对RNT1分配的影响
    假定有2个UE,UE1的C-RNTI为偶数,UE2的C-RNTI(或SIS C-RNTI)为UE1的C-RNTI加1(即,C_NRT12=C_RNTI1+1),在UE1使用“闭环天线选择”功能、基站指定了UE1使用Port1发射,那么UE1和UE2会被同时调度(UE1或UE2被错误地调度),从而可能导致严重干扰。
    解决这个问题有两种方法:第一个,MAC层做检查,看是否有这个RNTI存在(分配出去了)。如果存在,那么就固定使用Port0来发射,否则可使用Port1来发射;第二个,RRC在分配RNTI时就把这些RNTI都隔离起来了。推荐使用RRC进行RNTI隔离的方法。

4 仿真结果
    使用闭环天线选择之后,在1%的CDF处的SINR增益约为1.2 dB~1.5 dB,如图2所示。



5 结束语
    本文介绍了LTE FDD系统中的上行发射天线选择算法,并给出了相应的上行发射天线的选择策略。如何选取合理和有效的上行发射天线,是LTE系统中值得研究的关键技术,还需要进行进一步的研究和探索。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移远通信宣布,其自研蓝牙协议栈DynaBlue率先通过蓝牙技术联盟(SIG)BQB 6.1标准认证。作为移远深耕短距离通信...

关键字: 蓝牙协议栈 移远通信 COM BSP

上海2025年9月9日 /美通社/ -- 为全面落实党中央、国务院和上海市委、市政府关于加快发展人力资源服务业的决策部署,更好发挥人力资源服务业赋能百业作用,8月29日,以"AI智领 HR智链 静候你来&quo...

关键字: 智能体 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付与一汽出行达成合作,为其自主研发的"旗驭车管"车辆运营管理平台提供全流程支付通道及技术支持。此次合作不仅提升了平台对百余家企业客户的运营管理效率...

关键字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制药(PharmaEngine, Inc.)发现的新一代PRMT5抑制剂PEP0...

关键字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶

推进卓越制造,扩大产能并优化布局 苏州2025年9月5日 /美通社/ -- 耐世特汽车系统与苏州工业园区管委会正式签署备忘录,以设立耐世特亚太总部苏州智能制造项目。...

关键字: 智能制造 BSP 汽车系统 线控

慕尼黑和北京2025年9月4日 /美通社/ -- 宝马集团宣布,新世代首款量产车型BMW iX3将于9月5日全球首发,9月8日震撼亮相慕尼黑车展。中国专属版车型也将在年内与大家见面,2026年在国内投产。 宝马集团董事...

关键字: 宝马 慕尼黑 BSP 数字化

北京2025年9月4日 /美通社/ -- 在全球新一轮科技革命与产业变革的澎湃浪潮中,人工智能作为引领创新的核心驱动力,正以前所未有的深度与广度重塑各行业发展格局。体育领域深度融入科技变革浪潮,驶入数字化、智能化转型快车...

关键字: 人工智能 智能体 AI BSP

上海2025年9月2日 /美通社/ -- 近日,由 ABB、Moxa(摩莎科技)等八家企业在上海联合发起并成功举办"2025 Ethernet-APL 技术应用发展大会"。会议以"破界•融合...

关键字: ETHERNET 智能未来 BSP 工业通信
关闭