当前位置:首页 > 通信技术 > 通信技术
[导读]0 引言 继无线局域网(WLAN)和无线城域网(WMAN)之后,便携式技术产品的发展和应用需求的迅速增长,促进了新的无线个人局域网(WPAN)的诞生,使无线接入的产业链更加完善。 Zigbee 是新近推出的一个低数据率

0 引言

继无线局域网(WLAN)和无线城域网(WMAN)之后,便携式技术产品的发展和应用需求的迅速增长,促进了新的无线个人局域网(WPAN)的诞生,使无线接入的产业链更加完善。

Zigbee 是新近推出的一个低数据率的无线通信技术。它具有复杂度低、成本极少、功耗很小的特点,主要适用于自动控制、远程监控等领域。Zigbee 联盟在制定Zigbee 标准时,采用了IEEE802.15.4 作为其物理层和媒体接入层规范。基于IEEE802.15.4 标准的Zigbee 通信模块,可嵌入到各种设备当中,成本将有望控制在1.5 美元到2.5 美元之间,有着广泛的应用前景。据美国In-STat/MDR预测,2008 年出货量将超过1.5 亿个。

基于IEEE802.11b标准的Wi-Fi 是当今无线局域网的主流技术,而随着低速率应用市场需求的不断增长,Zigbee 和Wi-Fi 系统共处的可能性越来越大。但由于两者都主要工作在2.4 GHz 的ISM 频段,它们不可避免地会产生相互干扰,可见Zigbee 和Wi-Fi 之间的共存是一个亟需解决的问题。目前国内还没有相关的研究文献,文章下面初步分析了Zigbee 对Wi-Fi 的干扰情况,并提出了共存的解决方法。

1 Zigbee 和Wi-Fi 的主要特性比较

低速率、低功耗的Zigbee 有着特定的应用空间,是Wi-Fi的有效补充,两者的主要性能参数如表1 所示。

表1 Zigbee 和Wi-Fi 的主要特性


2 干扰分析

2.1 背景

Zigbee 工作在工业科学医疗(ISM)频段,定义了两个物理层,即2.4 GHz频段和868/915MHz 频段物理层,而868MHz 和915 MHz 的ISM 频段分别只在欧洲和北美有,所以其主要工作于全球范围内免许可证的2.4 GHz 的ISM 频段。必然会与工作在该频段的Wi-Fi 产生相互干扰。

Zigbee 的底层标准把2.4 GHz 的ISM频段划分为16 个信道,每个信道带宽为2 MHz,如图1 所示。Wi-Fi 将该频段划分为11 个直扩信道,系统可选定其中任一信道进行通信,信道带宽为22 MHz,所以11 个信道有重叠,无重叠的信道最多只有3 个,如图2 和图3 所示。显而易见,假定Wi-Fi 系统工作在任一信道,则Zigbee 和其信道频率重叠的概率为1/4.当Zigbee 和Wi-Fi 同时使用相同频段通信时,产生带内有色噪声干扰,导致传输分组冲突。

  




2.2 Zigbee 对Wi-Fi 的干扰分析

本节将分析在频偏为零的同信道条件下Zigbee 对Wi-Fi的干扰。假设一室内环境下的Zigbee 和Wi-Fi 设备节点如图4 分布。每个Zigbee 节点呈独立一致性均匀分布,其处于活动状态的概率为P[A ],分布密度为D.假设有个Zigbee 节点会产生对STA 有效的干扰,则分组冲突概率P[C]为m2:

本文室内路径损耗选用对数距离模型:

其中:n- - 依赖于周围环境,Xo- - 零均值的高斯分布随机变量,d0- - 近地参考距离。

根据文献[5]和[6],对于一个半径为R 的覆盖区,假设STA的SIR 的阈值为γ (如果Zigbee 节点要对STA 产生有效的干扰,使其SIR 必须小于γ ),则有效干扰区域的百分比为U(γ )(即对于STA的SIR低于γ的区域百分比),如果在半径范围内导致SIR低于阈值的概率为P[SIR<γ] ,则:


 

则对数正态分布变量SIR 的均值为:


 

其方差为δ。


 

针对上述模型做定性分析,由于Zigbee 底层协议IEEE802.15.4 中有着特殊的睡眠机制,节点处于活动状态的概率一般小于1 %[4],γ可取为10dBm[7],AP 和Zigbee 的传输功率分别为14 dBm 和0 dBm。

根据文献[6],分组出错率的期望E[PER]=P[C] ,分组冲突概率越大,相应的分组出错率也越大。从图5 可以看出,随AP和STA 的距离d以及δ的增大,系统的性能越差。




3 共存问题解决

共存一般可认为不同无线系统实现共处而不明显相互影响性能。类似IEEE802.15.2 规定的,共存方案在此也可分为协作方式和非协作方式两种[8].

对于协作方式,系统间可以进行信息交换从而能减少互相之间的干扰。对于非协作方式,两个系统不能够进行信息交换,只有监测到干扰存在时才做调整减少干扰程度。它们都有各自的应用范围,其中,协作方式最主要应用于同一设备中存在Zigbee 和Wi-Fi 两种装置的情况。在实际应用环境中,将会有许多Zigbee 和Wi-Fi 装置同时存在,且存在于不同设备中,这就需要非协作方式减小干扰。

3.1 协作方式

在此方式下我们可采用时序控制,在MAC层加入一个中央控制器,监控Zigbee 和Wi-Fi 的业务分布,并允许它们的信息进行交互,任一装置需要传输数据时先向中央控制器申请时隙,控制器根据特定算法统一分配时隙,并将分配情况反馈给申请装置。这样,就可以对分组的业务做出合理准确的安排,每一时刻只有一种装置工作,从而避免两种装置的干扰。

由于Zigbee 支持休眠模式,在大部分时间处于非工作状态,可以减小控制器执行的复杂度。

3.2 非协作方式。

3.2.1 自适应调整分组大小

显而易见,分组越长,相互干扰的可能性就越大。通过减少彼此的分组大小,在一定范围内可以减小受到干扰的可能性。但是分组长度太小,则发送同样数据所需次数增加,也就相应增加了报头开销的总量,并且,Zigbee 和Wi-Fi 的下面MAC 层都采用了ACK 机制,这也导致了确认开销的增加,整体的系统性能就会有一定程度的下降。

3.2.2 动态信道分配

在无线局域网中,避免干扰的最佳方法就是尽量选择不被其它设备占用的信道。在设备工作时,可以对ISM 频段进行扫描,根据具体的判断标准动态选择最佳的传输信道,避免占用同一信道,减小干扰。

3.2.3 功率控制

信噪比越高,分组丢失率也就越高。可以考虑降低无线系统发射功率来削弱相互干扰,有效提高无线通信系统吞吐量。Zigbee 和Wi-Fi 都属于近距离通信,采用功率控制技术也是克服相互干扰的有效手段之一。

4 结束语

Zigbee 和Wi-Fi 两种无线通信技术的应用满足了人们生活的不同需求,但相互间的干扰抑制了两种设备的同时应用的发展空间,控制干扰有着重要的意义。随着共存解决办法的提出,相信不久的将来,人们可以自由同时享用两种无线技术带来的便利。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

此战略布局将Wi-Fi HaLow置于台湾无线网络产业中心

关键字: Wi-Fi 无线网络 物联网

全球智能城市运动代表着城市环境设计、体验和导航方式的重大转变。这一重大变革部分是由数字化转型和物联网(IoT)技术推动的,这些技术正在将城市基础设施和城市景观重塑为智能连接中心。这一趋势的核心是符合智能城市独特需求的先进...

关键字: 数字化转型 物联网 Wi-Fi

以下内容中,小编将对宽带和WiFi的区别的相关内容进行着重介绍和阐述,希望本文能帮您增进对宽带和WiFi的了解,和小编一起来看看吧。

关键字: 宽带 Wi-Fi

Wi-Fi,全称为Wireless Fidelity,是一种在全球范围内广泛应用于各类电子设备间无线网络连接的技术。Wi-Fi技术始于20世纪90年代末期,由Wi-Fi联盟(Wi-Fi Alliance)开发并推广,旨在...

关键字: Wi-Fi 无线网络

随着科技的飞速发展,物联网(IoT)技术已经逐渐渗透到我们生活的方方面面。在这个智能化的世界里,各种设备需要通过无线通信技术实现互联互通。而蓝牙网关作为其中的一种重要技术,正扮演着连接物联网世界的桥梁角色。本文将深入探讨...

关键字: 蓝牙网关 Wi-Fi

随着科技的日新月异,无线网络技术也在不断发展与演进。作为现代生活的重要组成部分,WiFi技术经历了从第一代到第五代的演变。本文将重点探讨第四代(WiFi 4)和第五代(WiFi 5,即802.11ac)WiFi技术的区别...

关键字: Wi-Fi 无线网络

在下述的内容中,小编将会对路由器的相关消息予以报道,如果路由器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 路由器 Wi-Fi

在现实条件下,通过 sub-GHz Wi-Fi HaLow 信号远程视频通话距离达传统 Wi-Fi 的 十倍以上

关键字: Wi-Fi 物联网

Wi-Fi HaLow是物联网连接的未来

关键字: Wi-Fi 物联网 路由器

是德科技(Keysight Technologies, Inc.)亮相 2024 世界移动通信大会,重点介绍如何利用非地面网络(NTN)扩大无线通信范围,推动连通性更新换代,以及如何运用人工智能(AI)和机器学习(ML)...

关键字: 6G Wi-Fi 5G
关闭
关闭