当前位置:首页 > 测试测量 > 测试测量
[导读]在去年的Freescale全国大学生智能车大赛中,赛道信息检测方案总体上有两大类:光电传感器方案和摄像头方案。前者电路设计简单、信息检测频率高,但检测范围、精度有限且能耗较大;后者获取的赛道信息丰富,但电路设计

在去年的Freescale全国大学生智能车大赛中,赛道信息检测方案总体上有两大类:光电传感器方案和摄像头方案。前者电路设计简单、信息检测频率高,但检测范围、精度有限且能耗较大;后者获取的赛道信息丰富,但电路设计和软件处理较复杂,且信息更新速度较慢。在比较了两种方案的特点并实际测试后,我们选择了摄像头方案。本文将在获得摄像头采集数据的前提下,讨论如何对数据进行处理和控制策略的实现。

数据采集

我们选择了一款1/3 OmniVision CMOS摄像头,用LM1881进行信号分离,结合AD采样,实现了视频信号的采集。在总线周期为32M的情况下,每行最多能够采集80个点,其中前14个数据为行消影,第15到第80个点为有效数据点(见图1)。

图1 单行80点

摄像头每场信号有320行,其中第23到310行为视频信号。我们从中均匀采集了12行,最后得到一个12×80的二维数组。

信息处理

原始数据包含了黑线的位置信息,为了稳定可靠地提取这一信息,我们采取了以下步骤:

二值化

由于白线对应的电平值较高,而黑线电平值较低,因此图中第43到48点间

的凹槽就是黑线所在位置。为了提取出黑线,直观的想法是检测电平值的跳变。但实际黑白线边沿的电平经常不是突然跳变的,而有一个过渡过程,为此我们先对原始数据进行了二值化处理。这不仅使得边沿更加明显,而且可以去除电平值的一些小波动。二值化的结果如图2所示。

图2 单行数据二值化结果

黑线位置提取

二值化后,视频信号就只有黑白二种电平了。从左到右扫描视频信号,通常先扫到的是白点;否则若是黑点(赛道外),则继续往下,直到第一个白点。然后,设置一个计数器记录第一个白点后面连续出现的黑点数目。计数器初值为0,若检测到一个黑点,则加1;否则计数器重新置0。计数器每次清零前,判断是否大于2小于10(这可以滤除一两个黑点产生的毛刺):如果是,则黑线中心位置为当前点的坐标减去计数器值的一半;否则,继续扫描直到整行结束。最后单行的黑线提取位置如图3所示。

图3 单行黑线位置提取效果

中值滤波

完成单行黑线提取后,可将12行位置连接起来,得到黑线的大致趋势。但即使前面已有一些滤除干扰的措施,仍能发现个别行的黑线位置偶尔会出现异常跳变。于是,这里采用了常用的中值滤波技术:对于中间第2到11行这10行黑线位置,用当前行和前后两行位置的中间值作为当前行滤波后的黑线位置。中值滤波可消除单行干扰,得到的10行有效黑线位置用数组black_line[10]表示。

控制策略

得到10行黑线位置后,就可以充分利用这一信息对赛道各种情况(如图4所示)进行判决,实现速度和转向的优化控制:如在直道保持高速、入弯减速出弯加速;直道和S道P参数小些、普通弯道P参数大些等。下面通过给出作用在black_line数组上的算子O,介绍赛道判决的方法。

图4 直道、普通弯和S弯的黑线位置提取结果(红色虚线表示视野中心)

算子O计算的是赛道黑线与视野中心线所围成的面积(图4中黄色区域)。其计算公式为:

其中mid为中心线的位置。一般来说,(1)式的结果在直道上很小,且随着赛车不断进入弯道内,数值将逐渐增大,出弯时则逐渐减小。这样,可以根据size的值进行分级,判断赛车前方的路况,决定赛车的速度级别。另外,速度也可采用以size为变量的P控制:

其中cur_speed为当前控制速度,min_speed和max_speed分别为控制范围内的最小、最大速度,min_size和max_size为size的最小、最大值。

舵机控制的各种参数当然也可以根据size的大小进行比例调整,这样能达到快速冲过S弯的效果,但由于size值并不能严格区分S弯和入弯前一段时间的状态,所以在普通弯道中赛车将靠内行驶,存在碰到内侧标志杆的危险。因此,为了安全起见,舵机控制采用一般的P控制即可。

实践证明,摄像头能采集丰富的赛道信息,对这些信息进行预处理,并充分利用提取到的黑线位置对赛道进行判决,能使得赛车行驶快速流畅。

相信随着比赛的深入,摄像头方案的潜力会被进一步挖掘。今后为了适应更复杂赛道的要求,提高参赛成绩,可以考虑:

·结合记忆算法。赛道记忆能实现赛车行驶的全局优化,而且今年增加了坡道,仅凭视觉很难预先检测,因此若结合记忆算法将明显提高性能。

·对判决算子进行改进。前面介绍的赛道判决算子,能反映直道和进出弯道的特征,但是对于S道并不敏感,因此可以考虑对其进行改进,或者采用其它算子。通常,将几个算子的结果进行加权平均后能达到更好的效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年6月4日 /美通社/ -- 新能源汽车行业迎来智能化时代,汽车成为多维功能空间。黑芝麻智能推出武当C1200家族芯片,实现智驾、座舱等多域融合,满足多场景需求。通过与生态伙伴合作,提升研发效率,降低成本,加...

关键字: 芯片 智能驾驶 摄像头 后视镜

谐振电源LLC是一种高效率、高性能的电源拓扑结构,广泛应用于电子设备、通信设备等领域。其工作原理主要基于LLC谐振变换器的特性,通过合理设计电路参数和控制策略,实现高效能转换和稳定输出

关键字: 谐振电源 LLC 控制策略

黄智表示,高效计算的核心来源于对于计算任务和计算IP之间的合理分配。要平衡各种计算和各种数据流之间的流向、以及带宽、芯片应用场景等多个维度。这样整个芯片的硬件性能才能真正地得到发挥。只有这样才能真正做出小而美、巧而精的芯...

关键字: 机器人 摄像头 AI BOX 双光融合 深度感知 为旌 海山VS839

激光雷达与摄像头:原理、应用与未来发展怎么样呢?随着自动驾驶、机器人导航、无人机飞行等技术的快速发展,感知和识别周围环境成为了这些技术的核心需求。在这个过程中,激光雷达和摄像头成为了两种不可或缺的传感器。虽然它们都是感知...

关键字: 激光雷达 摄像头

激光雷达摄像头,也称为激光雷达传感器或激光扫描摄像头,是一种集成了激光雷达技术和摄像头技术的先进传感器。它结合了激光雷达的高精度测距能力和摄像头的图像获取功能,从而能够同时提供目标物体的距离信息和视觉信息。

关键字: 激光雷达 摄像头

在世界移动通信大会(MWC)上,基于与高通多年的合作沉淀,Prophesee展示了新一代无模糊的手机摄影技术。目前客户可将该技术集成到支持第三代骁龙 8 移动平台的设备中。

关键字: 智能手机 摄像头 视觉传感器

在自动驾驶系统中,摄像头、激光雷达、毫米波雷达和超声波雷达等传感器都发挥着重要的作用,但它们各自有不同的优缺点和应用场景。

关键字: 摄像头 激光雷达

2024年1月11日,中国上海 — 思特威(上海)电子科技股份有限公司(股票简称:思特威,股票代码:688213),重磅推出其首颗5000万像素1/1.28英寸图像传感器新品——SC580XS。此款新品是思特威继成功量产...

关键字: 图像传感器 智能手机 摄像头

计算机通信是一种以数据通信形式出现,在计算机与计算机之间或计算机与终端设备之间进行信息传递的方式。它是现代计算机技术与通信技术相融合的产物,在军队指挥自动化系统、武器控制系统、信息处理系统、决策分析系统、情报检索系统以及...

关键字: 计算机通信 信息处理

车载摄像头被誉为“自动驾驶之眼”,是通过镜头和图像传感器实现图像信息采集。采集到的数据经AI处理分析传递到控制中心,控制中心经过一定判断后再将之反馈到汽车或者驾驶员。

关键字: 摄像头 驾驶辅助系统 自动驾驶
关闭
关闭