当前位置:首页 > 测试测量 > 测试测量
[导读] 1.前言在实际的广播电视发射工作中,新的发射机的进场测试,发射机的日常指标测试等都涉及了音频的测试。本文设计的音频频谱分析仪就是从信号源的角度出发,测量音频信号的频谱,从而确定各频率成分的大小,为调频广

 1.前言

在实际的广播电视发射工作中,新的发射机的进场测试,发射机的日常指标测试等都涉及了音频的测试。本文设计的音频频谱分析仪就是从信号源的角度出发,测量音频信号的频谱,从而确定各频率成分的大小,为调频广播的各项音频指标的提供参考。

在本文中主要提出了以MSP43处理器为核心的音频频谱分析仪的设计方案。以数字信号处理的相关理论知识为指导,利用MSP430处理器的优势来进行音频频谱的设计与改进,并最终实现了在TFT液晶HD66772上面显示。

2.频谱分析仪设计原理

由于在数字系统中处理的数据都是经由采样得到,所以得到的数据必然是离散的。对于离散的数据,适用离散傅立叶变换来进行处理。

快速傅里叶变换,是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换,目前已被数字式频谱仪广泛采用。对于长度为N的复数序列 0 1 1 , , , N ? x x L x ,离散傅里叶变换公式为:

于是一个序列的运算被分解成两个运算的和的形式, ( ) 1 X k 和( ) 2 X k 可以继续向下分解,最终分解为两点的FFT运算。如果想要FFT运算后的输出为自然顺序排列,则输入序列需要按位倒序来排列。

图1为8点FFT的运算图。

经过FFT运算后,可以将一个时域信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了,这就是频谱仪的一般原理。

3.频谱分析仪的设计及实现

本文介绍了一种基于FFT的的数字音频频谱分析仪的设计方案,通过ADC采样输入的音频信号,ADC采样完成以后,将数据进行倒序排列并进行FFT运算,结果通过TFT液晶显示出来。系统的框图如图2所示。

3.1 音频频谱分析仪硬件实现

为了实现系统功能,采用16bit处理器MSP430来高效处理输入的数据流。MSP430自带ADC12模块,ADC12的采样数据经过运算,通过65K色的液晶显示频谱图。本系统硬件系统图如图3所示。

电源模块为整个系统提供供电。系统还能响应用户按键事件,并进行相应的处理。串口模块为系统的扩展预留。

3.2 音频频谱分析仪的系统软件设计

系统上电后首先进行系统初始化System_Init(),对看门狗、系统时钟、定时器、I/O端口、ADC等各模块进行初始化。接下来ADC12对连续的模拟信号进行采样,得到离散化的数字信号,由处理器读取该数字信号并进行相应的处理。采样频率过高,采样点数过多,会占用大量宝贵的处理器内存,降低数据处理速度;采样频率过低,又会使采样数据失真而无法恢复原始连续信号。因此,必须根据信号的频率范围来设置采样频率,同时要满足采样定理的要求。

当采样频率一定时,增加采样点数可以提高频率分辨率,但数据存储空间和计算量也相应增大。一般可根据实际需要进行采样点数的选取,通常设置为2的整数次幂,以便于进行后续的FFT谱分析,本系统采样点数为N=16.ADC12采样流程图如图4所示。

采样后的FFT数据处理是系统的又一个重点和难点,一方面,为了得到正序FFT,需要对原始自然序列进行码位倒序排列;另一方面,为了减少处理器的浮点运算时间,旋转因子kN W 计算采用查表实现。图5为FFT运算的倒序流程图。

如果提前将余弦和正弦计算出来作为全局变量,计算kN W 就可以直接调用进行加减计算,减少了大量的浮点运算时间,会以牺牲一点存储器的代价获得快速的系统响应。表1是编制的N=16时的余弦和正弦表。

图6表示的是FFT运算的流程图,整个FFT程序包含在一个迭代的过程中,最后一层计算总是2-FFT蝶形运算,下面是蝶形运算和FFT计算的主程序段:

当数据经过FFT处理完毕以后,最后一步就是直观地把数据显示出来了,在这里我们采用了TFT液晶HD66772.

结合HD66772的操作时序图,利用指令对其进行读写操作,可以对液晶的读写进行编程。MSP430F149与液晶HD66772模块之间的连接分为控制总线和数据总线。在液晶屏上正确显示信息,必须对液晶进行两个基本操作:第一,写入指令代码;第二,写入显示数据。

4.系统调试与运行

因为MSP430F149的主时钟采用8MHz晶振,虽然系统的单条指令的执行时间仅为0.125μs,但是加上处理FFT的运算、ADC12采样频率和液晶的写入时间等影响,液晶的实际刷新频率低于25Hz,产生严重的闪烁感。为了提高刷新频率,将实心柱图改为空心线条,每隔两个空心细线条写入一个实心线条,这样液晶的写入时间减少了2/3,既能保证显示的结果的准确性,也不牺牲系统的写入HD66772液晶的GRAM的时间。解决了信号闪烁的问题。图7为输入音频信号后TFT液晶显示的频谱图。

图7中将输入信号30Hz-15KHz的音频信号在频域进行了16等分,每一个柱子表示1KHz的频率带宽。从图中可以看到一般音频信号的能量集中在低频段,随着频率的升高音频能量也越来越弱,这也是调频广播采用加权技术来提高性噪比的原因了。

4.结论

本方案通过ADC采样输入的音频信号,ADC采样完成以后,将数据进行倒序排列并进行FFT运算,结果通过TFT液晶显示出来。由于采用的处理器的处理能力的原因,不能做到很高的采样频率和很精细的频率分辨率,要提高系统的频率分辨率,就需要增加采样点数。可以借助PC的强大处理能力,将采样的数据通过预留的串口传送给PC,在PC上完成FFT运算以及显示,这就是虚拟仪器的方式,实际工作中应用前景也非常大。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

‌MSP430电容触摸‌是指使用MSP430微控制器(MCU)实现的电容触摸感应技术。MSP430系列MCU以其低功耗和丰富的外设模块著称,特别适用于电容触摸应用。

关键字: MSP430

电磁兼容(EMC)问题已成为电子设备研发与生产中的核心挑战。据统计,超过60%的EMC故障源于设计阶段对干扰源定位不准确,导致后续整改成本增加3倍以上。传统EMC排查依赖“经验猜测-局部修改-重复测试”的试错模式,不仅效...

关键字: EMC整改 频谱分析仪

上海 2025年6月10日 /美通社/ -- 传统水田作业长久以来一直面临着诸多痛点:插秧精度低导致土地利用率不高,劳动强度大让农民疲惫不堪,作业效率不均更是影响了整体生产...

关键字: FM 高精度 移远通信 智慧农业

在我的数字电路课程中,我们的任务是创建一个项目提案,主题可以自由选择,然后将课程中学到的知识应用到最终的项目中,该项目必须在虚拟电路模拟器中实现。我选择使用Wokwi,一个我在这个项目之前从未使用过的平台。经过一番思考,...

关键字: 虚拟电路模拟器 LED矩阵 音频频谱

上海2024年12月12日 /美通社/ -- 近日,移远通信正式对外重磅发布其精心打造的北斗高精度农机导航自动驾驶系统 ——远征FMA310。该系统深度融合了多种移远前沿方案以及高性能模组的核心优势,可大幅提升农业生产的...

关键字: 移远通信 FM 高精度 自动驾驶系统

在许多领域得到广泛的应用,特别是它的超级低功耗特性,是目前所有其他单片机无法比拟的

关键字: TI公司 MSP430

在 第一部分中 ,我们讨论了如何在指定的偏移频率下,用相对于载波(DBC/赫兹)的每赫兹分贝来指定相位噪声。 f 补偿 .实际上,相位噪声是黄色1-HZ宽矩形的功率。 图1 相对于载波功率。

关键字: 相位噪音 频谱分析仪

上海2024年8月20日 /美通社/ -- 为响应时代需求,推动我国创新驱动发展战略的深入实施,上海交通大学上海高级金融学院(高金/SAIF)金融MBA项目在2024年7月宣布正式推出"科技金融"方向...

关键字: FM AI 智能制造 人工智能

5.4版专为满足现代无线系统应用需求而设计,结合泰克5系列MSO、6系列MSO或DPO70000示波器可用于多通道数字调制分析。

关键字: 频谱分析仪

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机
关闭