当前位置:首页 > 测试测量 > 测试测量
[导读]S参数可以由仿真软件产生,也可以由仪器对实物测量得到,比如力科公司的信号完整性网络分析仪SPARQ。无论何种途径得到的S参数文件,都是Touchstone格式的数据矩阵。

元器件通过互连线组建成电路,常见的互连线包括电缆、PCB走线、接插件、芯片封装等等。当信号频率比较低时,这些互连线对信号是透明的。当互连线的物理尺寸大于1 / 4信号波长时,它对信号的反射和相位时延已不能忽略,需要将其视为传输线(Transmission Line)。S参数是描述传输线电气特性的理想模型,已成为射频领域、信号完整性领域的事实标准。S参数可以由仿真软件产生,也可以由仪器对实物测量得到,比如力科公司的信号完整性网络分析仪SPARQ。无论何种途径得到的S参数文件,都是Touchstone格式的数据矩阵。

用S参数描述互连线,首先需要定义互连线的端口号。例如一条电缆被视为两端口,电缆两端分别标注为端口1和端口2,那么描述它的S参数包含4组数据:

S11:端口1的回波损耗

S21:从端口1到端口2的插入损耗

S12:从端口2到端口1的插入损耗

S22:端口2的回波损耗

无源的互连线两端是对称的,所以S11=S22,S12=S21.

图1 插入损耗S21和回波损耗S11

从图1可以看出这样一个明显的特点:插入损耗S21在低频段接近于0dB,回波损耗S11在低频段是比较大的负值(分贝表示)。这符合互连线的物理特点:低频信号的大部分能量都能通过互连线,被反射的能量很小。这个特点能够帮助我们从S参数数据中快速辨认出插入损耗。

Touchstone标准定义了S参数的数据格式,但却没有定义如何对端口编号。对于两端口无所谓,对于多端口,则有多种编号方式。例如用四端口S参数来描述一对PCB差分走线,有下面两种编号方式:

在方式1下,S21是插入损耗,S31是近端串扰。在方式2下则反过来了,S21是近端串扰,S31是插入损耗。无论按哪种编号方式产生的S参数文件都是可用的,但却容易对使用者造成困惑。工程师可能使用来源不同的S参数文件来做电路仿真。这些S参数的编号方式如果不统一,端口很可能被错误连接。仿真结果自然完全错误。虽然可以按前文所述特点来辨认插入损耗,但很麻烦。

另一种可能的情况是,工程师更愿意以差分的视角来描述一对走线,因此利用软件将4端口单端S参数转换为2端口混合模式S参数也是常事。混合模式S参数含有两组主要的数据:

SDD11 (SD1D1):1端口的差分回波损耗

SDD21 (SD2D1):1端口到2端口的差分插入损耗

如果是按方式2编号的单端S参数,很多软件转换得到的混合模式S参数,其SDD11为差分插入损耗,SDD21为差分回波损耗。这和传统习惯不符,更容易引起混乱。

因此,我们建议,无论是用仿真软件生成,还是用信号完整性网络分析仪SPARQ测量S参数,统一将左侧端口用奇数编号,右侧用偶数编号,如下图:

图3 正确的编号规则

这种编号方式也便于扩展。例如上图是三对差分线,如果要补上第四对差分线,只需要增加编号13 到16,不影响以前的端口编号。

用力科信号完整性网络分析仪SPARQ 测量一对差分线的混合S 参数,按我们建议的端口分配方法,设置界面 如图 4:

图4 在SPARQ 软件中分配混合模式S 参数端口

由此测量得到的混合模式S 参数矩阵按图5 所示。可分为四个象限,左上和右下象限分别描述了互连线对差分信号和共模信号的行为,右上和左下象限描述了互连线对差分和共模信号的模式转换行为。统一按此规则排列,方便工程师快速解读混合模式S参数。

图5 混合模式S 参数矩阵的四个象限

如果你获取到的S 参数文件已经是容易引起困惑的编号方式,可以从力科公司网站上免费下载SPARQ软件,将S 参数的端口重新分配,也能在单端和混合模式之间转换。如下图:

图6 利用SPARQ软件转换S参数文件的端口号和模式

正确地为S参数端口编号能提高工作效率,用力科信号完整性网络分析仪SPARQ能快速准确地测量S参数、处理S参数文件。为提升产品的信号完整性提供最大帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器有许多种,在先进测量技术这门课中提到了许多传感器,在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设...

关键字: 传感器 信号

高功率脉冲发射机作为一种能够产生高能量、短脉冲信号的设备,在众多领域发挥着关键作用。在雷达系统中,它为目标探测提供强大的发射功率,使得雷达能够在远距离精确识别和跟踪目标;在通信领域,可用于实现高速率、大容量的数据传输;在...

关键字: 高功率 脉冲发射机 信号

在当今数字化、智能化的时代,电子设备无处不在,从智能手机、智能家居到工业控制系统,它们在提升生活品质与生产效率的同时,也面临着高频干扰与兼容性问题的挑战。高频干扰会导致设备信号传输不稳定、数据丢失,甚至系统崩溃;兼容性问...

关键字: 高频干扰 兼容性 信号

在当今电子技术飞速发展的时代,随着电子产品不断向小型化、高性能化迈进,印刷电路板(PCB)的设计变得愈发复杂和精密。过孔,作为 PCB 中连接不同层线路的关键元件,其对信号完整性的影响已成为电路设计中不可忽视的重要因素。...

关键字: 印刷电路板 电路设计 信号

在当今高速发展的电子系统领域,信号完整性已然成为确保系统性能与可靠性的关键要素。从驱动到连接器的信号传输路径宛如一条信息高速公路,而接收端则如同这条公路的终点收费站,其设置的合理性直接关乎信号能否准确无误地抵达目的地。若...

关键字: 信号 连接器 驱动

在电子系统设计与信号传输过程中,工程师们常常会遇到信号波形不理想的情况。其中,信号波形下降沿出现上冲现象是较为常见的问题之一。这种异常不仅会干扰信号的正常传输,影响系统的性能和稳定性,甚至可能导致系统出现误判等严重后果。...

关键字: 信号 干扰 电子系统

在印刷电路板(PCB)设计中,过孔作为连接不同层线路的重要元件,其对信号完整性的影响不容忽视。随着电子技术的飞速发展,电路的工作频率不断提高,信号上升沿时间越来越短,这使得过孔对信号的影响愈发显著。在许多情况下,我们必须...

关键字: 印刷电路板 过孔 信号

在电子电路设计中,24 位 RGB TTL 信号的布线是一个关键环节,其布线质量直接影响到系统的性能和稳定性。特别是在涉及显示设备等对信号完整性要求较高的应用场景中,遵循正确的布线要求至关重要。下面将从多个方面详细阐述...

关键字: 信号 布线 显示设备

在现代高速电子系统中,信号完整性(Signal Integrity, SI)已成为确保系统可靠运行的关键因素。信号完整性是指信号在传输路径上保持其原始特性的能力,当信号从驱动端出发,经过传输线到达连接器,最终被接收端接收...

关键字: 信号 传输路径 质量

在当今电子设备高度集成化与智能化的时代,电磁干扰(EMI)已成为影响设备性能与可靠性的关键因素。随着电子设备数量的激增以及工作频率的不断提升,不同设备间的电磁信号相互干扰问题日益凸显,这不仅可能导致设备功能异常,还可能影...

关键字: 电磁干扰 信号 扩频
关闭