当前位置:首页 > 测试测量 > 测试测量
[导读] S型热电偶,在使用过程中由于操作不当或者其它干扰因素的影响,使得S型热电偶容易出现误差或者故障问题,对测量结果有着直接的影响。为了提高S型热电偶测量结果的准确性,下面小编为大家介绍S型热电偶出

S型热电偶,在使用过程中由于操作不当或者其它干扰因素的影响,使得S型热电偶容易出现误差或者故障问题,对测量结果有着直接的影响。为了提高S型热电偶测量结果的准确性,下面小编为大家介绍S型热电偶出现测量误差的原因。

一、深度

1、测温点的选择

S型热电偶的安装位置,即测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。

2、插入深度

S型热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使S型热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。

金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。

二、响应时间

接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。

对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。

S型热电偶,在使用过程中由于操作不当或者其它干扰因素的影响,使得S型热电偶容易出现误差或者故障问题,对测量结果有着直接的影响。为了提高S型热电偶测量结果的准确性,下面小编为大家介绍S型热电偶出现测量误差的原因。

一、深度

1、测温点的选择

S型热电偶的安装位置,即测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。

2、插入深度

S型热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使S型热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。

金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。

二、响应时间

接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。

对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

校准至关重要,我们必须定期校准仪器,以确保它们在规格范围内运行。校准将仪器的测量值与参考信号进行比较。如果仪器的读数超出可容忍的限度,则仪器将需要调整。在典型的校准中,将为每个范围校准几个(通常是 11 个)等间隔的值。...

关键字: 测量误差 仪器精度

示波器和 DMM(数字万用表)等测试仪器通常只需按一下按钮即可获得所需的测量结果。但仪表显示屏上的数字或示波器屏幕上的波形并不是完美的测量结果。显示的值永远不会与应用于仪器输入的值完全相同。此外,仪器使用不同的方法进行相...

关键字: 测量误差 仪器精度

GRAS的全新生产线测试麦克风引入了革命性的EQset™ 技术,这意味着性价比高、简单易用以及减少了测量误差。

关键字: 麦克风 测量误差

一直以来,测试测量都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来热电偶故障判别以及热电偶测量误差的相关介绍,详细内容请看下文。

关键字: 热电偶 测量误差 测试测量

在下述的内容中,小编将会对平面控制测量以及测量误差分类的相关消息予以报道。

关键字: 平面控制测量 测量误差 测量

传感器的种类繁多,每一种传感器都在各种行业发挥举重若轻的重要性。20世纪70年代光纤温度传感器的技术为微波场测温带来很多新的手段。本文具体为大家分析光纤温度传感器在微波场测温中的优点。  基于光纤光栅的光

关键字: 压力变送器 测量误差

上篇文章我们介绍了旋进旋涡流量计在测量气体介质时产生误差的原因,由于流量计对于测量气体的要求很高,不洁的含有杂质的气体会影响到测量数据的精准,并且由于流量计的选型和安装要求也有较高的要求,流量计所工作

关键字: 旋进旋涡流量计 测量气体介质 测量误差

超声波测厚仪显示值过大或过小原因分析 在实际检测工作中,经常碰到测厚仪示值与设计值(或预期值)相比,明显偏大或偏小,原因分析如下:(1、层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因

关键字: 测厚仪 测量误差 超声波

计量器具应用于生产与销售的各个环节。其测量结果的好坏直接反映生产、能耗情况,在销售环节影响企业生产的效益。因此通过计量器具测量误差原因分析,尽量减少测量误差。一、计量器具本身存在误差我厂的质量流量计精

关键字: 原因分析 测量误差 计量器具

偏移[1]和增益误差[2](如图7所示)是C-V测量中最常见的误差。X轴以对数标度的方式给出了电容的真实值,大小范围从皮法到纳法。Y轴表示系统实际测量的值,包含测量误差。如果测量系统是理想的,那么...

关键字: 测量误差 c-v测量技术 技巧与陷阱
关闭