当前位置:首页 > 电源 > 功率器件
[导读]什么是中频滤波器的带宽?你了解多少?众所周知,频谱仪是射频工程师最常见的检测设备之一,通过检测显示信号的频率、功率、谐波、相位噪声等诸多射频参数在进行测试测量分析。在使用频谱仪时,其中有一个参数需要单独设置,就是分辨率带宽(简称RBW)。RBW是指中频链路上最小的中频滤波器带宽,决定了能够通过的信号及宽带噪声的功率,因此对频谱测试至关重要。为何中频滤波器的带宽被称为分辨率带宽?这是本文重点讲解的部分。

什么是中频滤波器的带宽?你了解多少?众所周知,频谱仪是射频工程师最常见的检测设备之一,通过检测显示信号的频率、功率、谐波、相位噪声等诸多射频参数在进行测试测量分析。在使用频谱仪时,其中有一个参数需要单独设置,就是分辨率带宽(简称RBW)。RBW是指中频链路上最小的中频滤波器带宽,决定了能够通过的信号及宽带噪声的功率,因此对频谱测试至关重要。为何中频滤波器的带宽被称为分辨率带宽?这是本文重点讲解的部分。

为什么称为分辨率带宽呢?

当测试CW信号的频谱时,您可能有过这样的体会:增大RBW时,信号频谱会“变胖”,而减小RBW时,信号频谱会“变瘦”,为什么会出现这样的情况?这样还能准确测试信号的频率和功率吗?首先明确的是,对于CW信号,只要具有足够的信噪比,使用多大的RBW都是可以准确测试功率的,而单频点信号的频率测试也是不受RBW影响的。之所以在不同的RBW时具有不同的频谱形态,是因为看到的频谱实际上是中频滤波器的幅频响应。

对于扫频式频谱仪,中频是固定的,射频的扫描测试是通过LO的不断调谐实现的,正是由于LO的调谐才使得频谱呈现这样的形态。为了更加清晰地说明这一点,下面通过图示进行解释。图1中,紫色谱线为RF信号的位置,红色谱线为LO调谐的位置,而蓝色谱线为IF——频谱仪的中频都是固定的值。浅蓝色曲线为Gaussian filter的幅频响应曲线,红色的圆点表示在LO不断调谐过程中,与RF信号混频后产生的中频信号的位置。

LO调谐时,混频后的中频信号首先不断靠近频谱仪的IF,然后再逐步远离IF,假设混频器的变频损耗是平坦的,这意味着LO调谐过程中产生的所有中频信号的幅度都是相同的。但是,最终都要经过一个中心频率固定的中频滤波器,因此,最终呈现出的频谱就是这个中频滤波器的幅频响应曲线。

那么前面介绍的这些内容与分辨率有什么关系?

这是为了更好地理解下面的内容,前面是以单音信号为例,如果测试的是图2所示的等幅双音信号(绿色谱线),频谱将是怎样的呢?

如果双音信号频间距远远小于中频滤波器的带宽,那么频谱仪是无法“分辨”出这两根谱线的,而是“误认为”是一根谱线。当频间距与中频滤波器带宽相等时,频谱仪测得的频谱将如图2(中)所示,通常认为此时为可分辨的临界点。如果将RBW设置得远远小于频间距,则可以非常清晰的将两个信号分辨出来,如图2(右)所示。

类似地,对于多音信号,只有中频滤波器带宽远远小于最小频间距时,频谱仪才可以清晰地分辨出来。因此,中频滤波器的带宽决定了频谱仪的频率分辨率, 这就是为什么将其称为分辨率带宽RBW的原因。

为了使得频谱仪能够更好地分辨信号,如何设置RBW呢?其实没有一个定论,操作人员可以通过连续调整RBW的方式选择合适的值。通常情况下,对于等幅双音或多音信号,建议将RBW设置为最小频间距的1/10;对于非等幅信号,由于中频滤波器有限的带外选择性,需要将RBW设置得更小。

RBW除了影响分辨率,还会影响频谱仪哪些参数?

文章开头提到,RBW决定了能够通过中频滤波器的宽带噪声信号的功率,这也就意味着会影响频谱仪的底噪声水平。如果测试的是宽带信号,那么同样也会影响显示的信号功率大小。

当降低RBW时,频谱仪显示的底噪声也会随之而降,反之,当增大RBW时,底噪声也会随之增大。这就好比在教室上课,而外面很嘈杂,当将门逐渐关闭时,能听到的噪音越来越小,这是相同的道理。

如果要从理论上分析RBW对频谱仪底噪声的影响,那么就要从下面的公式说起。假设在室温下(290K),则频谱仪的底噪声为:

Noise Floor, rms = kBT 0 * F SA * G SA

式中,k为玻尔兹曼常数,B为系统带宽,F SA 为频谱仪整个链路的等效噪声因子,G SA 为整个链路的增益。通常,频谱仪的链路都做了校准,因此G SA =1。

Noise Floor, rms = kBT 0 * F SA

对于频谱仪而言,系统带宽B与RBW之间有一定的比例关系,这取决于所使用的中频滤波器的类型,比如目前广泛应用于频谱仪的Gaussian滤波器,系统带宽B与RBW基本相同。

为了便于理解,将上式写为对数形式,如下:

Noise Floor, rms = -174dBm/Hz + NF SA + 10lg(RBW)

由上式可知:RBW越大,频谱仪的底噪越高;RBW增大10倍,则底噪将抬高10dB。

所以,当测试比较微弱的信号时,就可以通过降低RBW来提高频谱仪的测试灵敏度。

值得一提的是,当测试宽带信号的频谱时,比如数字调制信号或者宽带噪声信号,Marker显示功率值并不是一个频点的功率,而是RBW带宽内的总功率。当降低RBW时,Marker显示的功率值也会变小;同样,增大RBW时,Marker显示的功率值也会变大。这些变化都是 正常的!

但是测试单频点信号的功率除外,只要具有足够的信噪比,无论RBW如何设置,Marker显示的功率值都是不变的!

RBW除了影响频谱仪的底噪和频率分辨率,对总体的扫描速度也有影响。当RBW设置得很小时,频谱仪的扫描速度会非常慢,这是因为:滤波器的带宽越小,瞬态响应时间越长,也就是需要更长的时间建立冲激响应。

如何设置RBW才能实现更好的测试效果?

具体如何设置RBW,与测试的信号特点以及测试参数都有一定的关系。需要根据RBW对频谱仪性能的影响,以及信号自身的特点,选择合适的RBW。下面列举了三种典型的测试场景,并给出了相应的推荐设置。

场景一:单频点信号的频谱测试

如果信号功率较大,无所谓RBW如何设置。但是,当信号很微弱时,就需要适当降低RBW,以降低底噪声,提高信噪比,比如测试杂散、高次谐波等。如果要保证一定的功率测试精度,则SNR至少要达到10dB以上。

场景二:多音信号的频谱测试

多音信号是指具有多个频率点的CW信号,如果各个频点的幅度相同,则建议RBW不超过最小频率间距的1/10,以完全分辨出各个信号。如果各个频点的幅度不同,那么RBW还需要设置得更小,以减少中频滤波器的滚降特性带来的影响。比如,测试射频脉冲信号的线状谱时,距离载波越远的谱线幅度越低,RBW要远远小于脉重频才可以实现清晰的观测。

场景三:带宽积分法测试宽带信号的总功率

测试宽带信号的总功率,应用更多的是带宽积分法,测试思路是,首先根据当前设置的RBW及对应的功率值计算出信号的功率谱密度,然后再对宽带信号进行积分,从而得到总功率值。

有些文献提到,采用带宽积分法测试宽带信号总功率时,由于中频滤波器有限的带外抑制度,在信号带宽左右两个边界处,无法对带外信号或噪声进行充分抑制,因此为了提高测试精度,建议将RBW选择为信号带宽的1%~3%。当然,RBW也不适合取太小,否则测试速度会非常慢。

其实,如果只是测试宽带信号的功率,大可不必将RBW设置得这么小,实测表明:RBW取为信号带宽的1/10,甚至更大,测得的信号功率并没有太大变化。

尽管如此,当测试诸如CDMA/WCDMA等无线通信信号的ACPR或者ACLR时,仍然建议RBW设置得小一点,这样在测试临道功率时,才能够抑制较强的信道信号,从而保证测试精度!

另外,还须注意,只有选择RMS检波器时,测得的功率才是真正的总功率。关于显示检波器的内容,将在后续的文章中详细地描述。

小结

在初次使用频谱仪时,也有很多困惑,其中就包含对RBW的理解。为什么称为“分辨率”带宽,RBW对频谱仪有什么影响,对测试结果有什么影响,等等诸如此类的问题。经过不断的摸索和思考,对这些问题的理解也更加深入,整理下来分享给大家,希望对大家有所帮助。以上就是中频滤波器的带宽,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

有一次同事问我频谱仪的原理是什么,我说我和你知道的差不多,哈哈,从来都是学习怎么使用,没有了解过内部的结构啊,随后赶紧翻阅资料,找到了一本是德科技的频谱仪分析基础,这本书果然厉害,需要的可以下载(是德科技 | 频谱分析基...

关键字: 频谱仪 总框架 技术

超外差的结构中,如果本振具有连续可调谐的宽带频率输入范围,那么输出中频就是一个固定值。采用高中频的设计,镜像信号频率远远大于输入信号频率,信号就不会出现混叠的问题了,同时对于前端只要采用合适截止频率和衰减低通滤波器(LP...

关键字: 频谱仪 频率 滤波器

今天,小编将在这篇文章中为大家带来频谱分析仪的有关报道,通过阅读这篇文章,大家可以对频谱分析仪具备清晰的认识,主要内容如下。

关键字: 频谱分析仪 频谱仪 分析仪

本文中,小编将对频谱分析仪予以介绍,如果你想对频谱分析仪的详细情况有所认识,或者想要增进对频谱分析仪的了解程度,不妨请看以下内容哦。

关键字: 频谱分析仪 频谱仪 网络分析仪

本文中,小编将对频谱分析仪予以介绍,如果你想对频谱分析仪的详细情况有所认识,或者想要增进对频谱分析仪的了解程度,不妨请看以下内容哦。

关键字: 频谱分析仪 频谱仪 分析仪

摘要:基于虚拟仪器的概念,通过GPIB接口总线实现PC机与可编程频谱之间的通信,给出了利用PC机对频谱仪进行控制的实现方法。该方法以LabWindows/CVI软件为平台设计虚拟仪器控制面板,并通过GPIB卡控制采集卡和...

关键字: GPIB总线 虚拟仪器 频谱仪 LabWindowsCVI

最近我自己在做一款射频功放。做出来也就是一款产品了。谈到功放,大家都不陌生,就是把信号放大最后经过天线发射出去,但是目前射频这一块,把功放单独拿出来算是一个类目,功放说起来很简单,但是做起来要考虑的事

关键字: 射频功放 频谱仪

你知道示波器和频谱仪的分析性能指标吗?分不清示波器和频谱仪的区别的人常闹笑话,为避免尴尬,本文简单总结以下四点——用实时带宽、动态范围、灵敏度、功率测量准确度,比较示波器和频谱仪的分析性能指标,来区分两者。

关键字: 指标 示波器 频谱仪

示波器和频谱仪都是电子测试测量中必不可少的测试设备,分别用于观察信号的时域波形和频谱。时域波形是信号最原始的信息,而频谱的引入主要是为了便于分析信号,比如谐波和杂散的测试,从时域上很难观察到,但是从频域就可以非常明了的区...

关键字: fft 示波器 频谱仪

天线性能的主要参数有方向图、增益、输入阻抗,驻波比,极化方试等,用频谱仪对单收天线主要是对天线水平、俯仰方向的两个方向图测试,根据方向图3dB处的角度,推算出天线增益,包络线法则验证天线的性

关键字: 频谱仪 测试天线
关闭
关闭