当前位置:首页 > 通信技术 > 移动通信
[导读] 除了大带宽、低时延、高容量之外,网络能力灵活、弹性、可定制是5G区别于以往移动通信制式的主要特征,这就对端到端的网络架构提出了新的要求,其中,连接移动用户和基站之间的空中接口(简称“空口”)也面

除了大带宽、低时延、高容量之外,网络能力灵活、弹性、可定制是5G区别于以往移动通信制式的主要特征,这就对端到端的网络架构提出了新的要求,其中,连接移动用户和基站之间的空中接口(简称“空口”)也面临着变革的需求。而且由于空口定义了每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换等,因此变革的形势尤为紧迫。

在不久前落幕的2019年中国国际信息通信展期间,中国联通发布了“弹性空口(CUBE-FLEX AIR)”新型解决方案等成果,实现“网随业变,网随人动”,打造“弹性”“智能”“协同”的网络,实现业务体验与系统效率的双提升。 

刚性资源配置方式难以满足新需求

在过去的移动通信制式下,用户使用的业务较为简单,对空口资源的需求也较为固定和简单,现在随着5G的商用,传统刚性、固化的资源配置方式已经难以满足新的业务需求。在中国联通专家看来,变革空口的需求和挑战具体体现在以下几个方面。

首先,多系统长期共存,刚性的系统分配频谱效率低下。随着系统演进更新的加速,2G/3G/4G/5G多种制式存在长期共存和动态的业务迁移,各个系统刚性的资源配置无法匹配业务动态的变化,造成不同频段和制式下资源利用效率的严重不均,难以发挥频率效率的最大化,需要更弹性的资源配置。

其次,业务需求多样化,固化的网络资源配置难以予以满足。5G时代到来带来业务需求的多样化,传统eMBB业务以下行容量需求为主,但2B类业务,如远程医疗、安防监控、临时集会等大带宽上行需求凸显,固定化的帧结构及上下行资源配置难以满足差异化的业务需求,需要更灵活的资源配置。

再次,业务多样化带来网络管理复杂化,人工配置的网络难以满足要求。5G网络引入了Massive MIMO和波束赋形技术,在带来系统能力和效率提升的同时也带来了网络规划、优化和能耗方面的挑战,传统的人工配置方式难以满足差异化的场景需求,需要智能化的网规和网优技术。

最后,业务分布不均衡,单一的网络难以满足所有业务需求。5G带来丰富的业务,不同业务在速率、时延、可靠性方面的需求存在较大的差异,单一的网络覆盖只能满足2C用户的基本需求,对于差异化的业务需求需要更加融合和协同的网络。

变革空口需求迫切,为此,中国联通近日推出了弹性空口解决方案,该方案是中国联通基于5G网络长期演进,为了更好地适配端到端网络切片和多场景行业应用需求而提出的,能够做到依据用户和业务动态需求动态配置网络资源的新型无线技术方案。

“弹性”“智能”“协同”为三大关键词

据悉,中国联通的弹性空口解决方案包括动态资源配置、智能网络管理、灵活空口协同等关键技术手段,实现“网随业变,网随人动”,在匹配用户业务需求的同时最大化系统的效率,打造“弹性”“智能”“协同”的网络,实现业务体验与系统效率的双提升。

“弹性”“智能”“协同”是弹性空口的三大关键词,而每一个关键词的背后都有一系列技术的支撑。

其中,“弹性”指动态的资源配置,包括动态频谱共享、灵活的系统带宽和灵活的帧结构等。

“智能”指智能的网络管理,包括智能的波束管理和智能的能耗管理。

“协同”指灵活的空口协同,包括宏微协同和高低频协同。

三年目标,稳步推进

为了推动弹性空口方案更好地推广和落地,中国联通还给弹性空口技术的推进制定了三年目标。

2020年:推进2.1GHz的动态频率共享技术与设备成熟,推动N1 25/30/40/50 MHz灵活带宽国际标准化,推动毫米波上行为主帧结构基站设备开发,智能波束管理平台的研究与开发,智能能耗管理平台的开发与试运行,室外微站产品开发及宏微协同验证,推动N1+N78和N78+N78载波聚合技术与设备成熟。

2021年:推进N1频段的55/60MHz的带宽;依据技术成熟度适时推动N78 200MHz带宽;推动毫米波上行为主帧结构基站设备试点验证,智能波束管理平台试验及试运行;改进智能节能平台运算效率和处理处理;实现5G智能节能平台现网运行;推动室内外宏微间互通与干扰协调研究与验证;推动N1+N78和N78+N78载波聚合试点及应用。

2022年:推进1.8GHz频段支持动态频谱共享技术与设备成熟,推动毫米波上行为主帧结构基站设备冬奥场景应用,推进宏微之间的融合组网及智能化组网方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭