当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 谷歌AI推出端到端纯语音翻译技术,有望成为未来的“机器同传” 我们先来听一下三段语音: 三段语音说的是同一句话:“你好,我是 Guillermo,你怎么样?(How's

谷歌AI推出端到端纯语音翻译技术,有望成为未来的“机器同传”

我们先来听一下三段语音:

三段语音说的是同一句话:“你好,我是 Guillermo,你怎么样?(How's it going, hey, this is Guillermo. How are you?)”

只不过第一段是西班牙语原声(Qué tal, eh, yo soy Guillermo, ?Cómo estás?),第二段是标准的人类英语翻译,而第三段则是AI合成的英语翻译,来自于谷歌 AI 最新的语音翻译模型 Translatotron。

该模型是一个基于注意力机制(Attention)的端到端语音翻译神经网络。它不同于传统语音翻译技术,在翻译的过程中省略了中间步骤,完全不需要进行语音转文字和完成翻译的文字转语音,而是根据翻译内容,尝试匹配不同语言的语音频谱图(speech spectrogram),直接完成语音之间的转换。

换句话说,我们刚才听到的第一段西班牙语和第三段英语片段,AI在翻译的过程中,没有使用到任何语音转文字的技术,也没有使用西班牙语和英语的文字翻译技术,只有纯粹的语音转换。

虽然从翻译的准确率来看,Translatotron 模型还比不过传统翻译技术,但这种端到端的联合优化思路确实打破了主流语音翻译技术的基本原理,具有很强的启发性和拓展性。

目前谷歌只使用了西班牙语和英语语音作为概念验证,研究成果以预印本的形式发表在 Arxiv 和谷歌 AI 博客上。

打破常规思路

不同语言之间的语音转文字和翻译,是近年来机器学习领域的热门研究方向,尤其是语音到语音的直接翻译。

通常来讲,语音翻译过程可以分解成三个步骤。

第一步是语音识别,就是将英文语音内容识别出来,并且以文字的形式表达出来,比如听到“How are you?”这句话,就写出 How,are,you 三个单词和问号。

第二步是文字翻译,就是将上一步拿到的文字翻译成目标语种,比如写出“你好吗?”这句话。

最后一步是语音合成,也就是将翻译好的文本组合成一段语音,然后播放出来。

图 | 不同模型从西班牙语到英语的语音翻译对比

谷歌翻译等当下常见的语音翻译软件都遵循了这一思路,并且对每一步骤进行了很多优化,比如引入端到端模型(End-to-end model)。这是一种将三个步骤结合起来,比如建立语音信号到文字映射,进而实现整体优化的模式。

在谷歌研究人员看来,他们提出的 Translatotron,是之前很多端到端研究成果的进一步延伸,可以直接抛弃文字翻译这一中间步骤,成功在神经网络的帮助下,实现了不同语言语音片段的直接转换。

他们使用的是一套序列到序列模型(Sequence-to-sequence model),即训练 AI 将有关联的连续数据视为一段整体(英文句子),然后直接转化为另一段不同的整体(中文句子)。

在 Translatotron 中,研究人员选择了语音片段的频谱图作为序列,上面描述了语音频率随时间变化的热图。它们会作为输入值进入到神经网络中,随后经过8层堆叠双向长短时记忆网络(BLSTM)编码器,频谱与自动语音识别特征结合,多头注意力和频谱解码器等多个模块,完成对语音频谱特征的提取,转换和生成等任务。

经过上述一系列转换后,西班牙语语音频谱就变成了对应的英语语音频谱,最后可以通过声码器(vocoder)合成我们听到的语音。如果需要的话,还可以使用额外预训练好的 Speaker 编码器捕捉语音源的声音特点,添加到合成语音当中,让两者听起来更加相似。

在训练过程中,Translatotron还使用了多任务学习技巧(mulTItask learning),引入了四个长短时记忆网络解码器。

上图的辅助识别任务区域(Auxiliary recogniTIon tasks)就是负责在生成目标语种频谱图的同时,也顺便学习一下如何预测语音的因素和文字内容。只不过它们没有被用来进行推理,否则就不是纯语音翻译了。

为了测试翻译质量,研究人员使用了机器翻译评估算法 BLEU,最好成绩达到了基准表现的76%。

他们认为,这一成绩虽然不及主流的传统语音翻译技术,但 Translatotron 作为一个概念验证,足以证明抛弃机器翻译和文字转换的思路行得通,而且可能还在还原音色等方面拥有更大的潜力。

下一步,谷歌团队将尝试降低训练过程中的监督水平,扩大合成数据和多任务学习的规模,并且探索其他可以转移的声音元素,改善合成语音的质量。

不得不说,直接在不同语言之间转换音频的想法还是很有创意的,而且极富挑战性,对特征提取质量,语音频谱绘制和噪声抵抗能力提出了更高的要求,足以启发其他团队,成为一个新的研究方向。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭