当前位置:首页 > 物联网 > 网络协议
[导读] 引言 在托卡马克等离子体物理放电过程中,破裂与据齿的研究具有重要的意义。在大多数托卡马克放电过程中都存在破裂与锯齿。破裂是一个值得注意的事件,其间等离子体的约束遭到严重的破坏,它不仅限制

引言

在托卡马克等离子体物理放电过程中,破裂与据齿的研究具有重要的意义。在大多数托卡马克放电过程中都存在破裂与锯齿。破裂是一个值得注意的事件,其间等离子体的约束遭到严重的破坏,它不仅限制了等离子体的电流和密度的运行区域,而且它造成的机械应力和热负荷给等离子体容器壁带来严重损害。对破裂,目前在理论上仍缺乏详尽理解,大体上可将其分为低q破裂和密度极限破裂。利用村上(Murakami)参数作横坐标的Hugill图,我们可以得到破裂和托卡马克等离子体运行区域的初略了解。

在大多数情况下托卡马克等离子体中心存在驰豫振荡,也就是温度和密度的锯齿振荡。在上升期,磁轴附近的电流密度增加,中心q值下降,在下降期,磁轴附近的电流密度下降,中心值增加。锯齿的机制不太清楚,一般由卡达姆采夫重连模解释。

破裂与锯齿的软X-射线行为大体可以分为四个阶段,即预前兆期、前兆期、快速下降期、以及恢复或熄灭期。对于破裂与锯齿的快速下降期,通常人们对它有一种误解,即认为在此期间,软X-射线信号是单调或准单调地下降的。事实上,只要采样频率足够高,仔细观察,不难发现软X-射线是振荡下降的,而且一阶小量大于零阶量(通常将直流成分定义为零阶量)。

可见,为了获得破裂和锯齿行为的详尽信息,必须采用时间分辨率较高的等离子体诊断方式。随着采样频率的增加,获得的数据量也成倍增加,这给数据的存储、传送和处理带来了极大的困难。要在漫长的放电过程中,实现高速数据采集,并在给定的短时间内完成数据的存储、传送和处理成为构建测试系统要解决问题的关键所在。

构建VXI测试系统

由于在托卡马克等离子体物理漫长的放电过程中,破裂和锯齿是非常短暂的过程,这为我们克服这些困难提供了条件。

我们以这样的方式组成40通道VXI数据采集测试系统,针对漫长的放电过程除破裂和锯齿等短暂过程外其缓慢变化的特征,在各个通道采用较低的采样率采集全过程数据,确保能采集到放电全过程的数据,就可以满足对放电过程的概况测试。将其战速采集时间设定为1.6秒,可以覆盖所有放电过程。但由于采样频率低,整个持续1.6秒的慢采集过程形成的数据量也就仅仅每通道几十K。

低速采集的同时,每通道还有一个与低速采集并行进行着的高速采集,专门用来采集破裂和锯齿事件。

高速采集和低速采集有各自不同的存储器存储数据,高速采集的存储器被分为很多片段,最多可分为16段,每段存储器采集存储一个破裂和锯齿事件数据。在低速采集开始以后,由一个专门的事件触发模块多次触发快速采集,每次触发启动一次快速采集过程,记录一个事件信号。由于破裂和锯齿事件非常短暂,持续时间也就几毫秒,对于2MSa/s的高速采集,每通道存储器总的长度不到100K就可满足多次快速采集的存储数据的需要。

这样一来,我们构建的VXI测试系统用一种变通的方式实现既可以由低速采集观察到漫长的放电过程的全貌,又可以由高速采集仔细分析破裂和锯齿的短暂过程,以及判断事件出现在放电过程的时刻,将常规方式采集下每通道约3MSa的存储器需求降到100KSa左右,解决了由于采样频率的增加而产生的数据量成倍增加的矛盾。为在给定的短时间内完成数据的存储、传送和处理提供了保证。

功能设计考虑

要构建测试系统,我们首先需要一个最基本的VXI平台:13槽的VXI机箱和零槽控制器,在此平台基础上,我们开始构建这套专用系统的测试功能部分。系统测试功能部分的硬件被抽象为两个基本功能:一个是信号数据采集和存储,包括慢速的全过程采集和同时进行的快速的破裂和锯齿事件捕捉;另一个是识别和判断破裂和锯齿事件,产生对采集的触发。两个抽象的基本功能确定了测试系统要开发的两种类型的VX I模块:数据采集模块和事件触发模块。

在我们的测试系统中,需要40个并行采集通道,数据采集模块被设计为每模块4个通道,需用到10个采集模块数。40个通道并行工作,系统的快速采集只需要由一个事件触发模块来启动,只需要对被监视的一路信号来加以判别产生动作。13槽的VXI机箱刚好满足使用。

系统工作模式是这样进行的:工作开始时,事件触发模块首先接受代表放电过程开始的外部触发信号,来启动数据采集模块的慢速采集,同时启动事件触发模块内部的破裂和锯齿事件鉴别工作。每当事件触发模块鉴别出设定事件时,它就立即通过TTLTRGn线发出触发信号,启动数据采集模块的一次快速的数据采集,捕捉破裂和锯齿事件信号。破裂和锯齿事件的发生到事件触发模块鉴别出事件,给出触发信号总会有延迟,所以,在快速的每一次数据采集对应的存储数据中,还必须使用负延迟触发功能。一次快速数据采集完成自动进入下一段存储器,准备接受下一次触发,启动下一次采集,直到设定的快速数据采集次数全部完成。

最后,当数据采集模块1.6秒的慢速采集数据过程全部完成,整个采集过程宣告结束,才可以开始处理数据,并准备下一次的工作。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭