当前位置:首页 > 半导体 > 半导体
[导读]AI的快速发展直接促进了CPU和GPU的发展,而AI应用专门的处理器是IPU,IPU将基于自身优势为世界的智能化进程增添不竭动力。

AI的快速发展直接促进了CPU和GPU的发展,而AI应用专门的处理器是IPU,IPU将基于自身优势为世界的智能化进程增添不竭动力。

一、英伟达专注的GPU优势逐渐缩小

从专注图像渲染崛起的英伟达的GPU,走的也是相当于ASIC的技术路线,但随着游戏、视频渲染以及AI加速需要的出现,英伟达的GPU也在向着GPGPU的方向演进。

当硬件更多的需要与软件生态挂钩时,市场大多数参与者便会倒下。在竞争清理过后,GPU形成了如今的双寡头市场,并且步入相当成熟的阶段。

ASIC本身的成本、灵活性缺失,以及应用范围很窄的特点,都导致它无法采用最先进制程: 即便它们具备性能和能效优势,一旦无法采用最先进制程,则这一优势也将不再明显。

为保持其在GPU领域的寡头地位,使得英伟达必须一直保持先进的制程工艺,保持其通用性,但是要牺牲一定的效能优势。

相比于来自类GPU的竞争,英伟达不应该忽视Graphcore的IPU,特别是Graphcore一直都在强调其是为AI而生,面向的应用也是CPU、GPU不那么擅长的AI应用。

二、利用AI计算打侧面竞争战

不管CPU还是GPU都无法从根本上解决AI问题,因为AI是一个面向计算图的任务、与CPU的标量计算和GPU的矢量计算区别很大。

而另一边的IPU,则为AI计算提供了全新的技术架构,同时将训练和推理合二为一,兼具处理二者工作的能力。

作为标准的神经网络处理芯片,IPU可以支持多种神经网络模型,因其具备数以千计到数百万计的顶点数量,远远超过GPU的顶点规模,可以进行更高潜力的并行计算工作。

计算加上数据的突破可以让IPU在原生稀疏计算中展现出领先IPU 10-50倍的性能优势,到了数据稀疏以及动态稀疏时,IPU就有了比GPU越来越显著的优势。

此外,如果是在IPU更擅长的分组卷积内核中,组维度越少,IPU的性能优势越明显,总体而言,有4-100倍的吞吐量提升。

在5G网络切片和资源管理中需要用到的强化学习,用IPU训练吞吐量也能够提升最多13倍。

三、两种芯片势能英伟达与Graphcore的较量

Graphcore成立于2016年,是一家专注于机器智能、同时也代表着全新计算负载的芯片制造公司,其包括IPU在内的产品研发擅长大规模并行计算、稀疏的数据结构、低精度计算、数据参数复用以及静态图结构。

英伟达的潜在竞争对手Graphcore的第二代IPU在多个主流模型上的表现优于A100 GPU,两者将在超大规模数据中心正面竞争。

未来,IPU可能在一些新兴的AI应用中展现出更大的优势。

第二代IPU相比第一代IPU有两倍峰值算力的提升,在典型的CV还有NLP的模型中,第二代IPU相比第一代IPU则展现出了平均8倍的性能提升。

如果对比英伟达基于8个最新A100 GPU的DGX-A100,Graphcore 8个M2000组成的系统的FP32算力是DGX-A100的12倍,AI计算是3倍,AI存储是10倍。

四、AI计算未来有三种计算平台

第一种平台是CPU,它还会持续存在,因为一些业务在CPU上的表现依然不错;

第二种平台是GPU,它还会持续发展,会有适合GPU的应用场景。

第三种平台是就是Graphcore的IPU。

IPU旨在帮助创新者在AI应用上实现新的突破,帮助用户应对当前在CPU、GPU上表现不太好的任务或者阻碍大家创新的场景。”卢涛副总指出。

目前GPU在全球已是大规模的商用部署,其次是Google的TPU通过内部应用及TensorFlow的生态占第二大规模,IPU处于第三,是量产的、部署的平台。

与此同时,Graphcore也在中国积极组建其创新社区。Graphcore已在微信、知乎、微博和GitHub开通了官方频道,旨在与开发者、创新者、研究者更好地交流和互动。

关于未来的AI计算领域,未来会是 “CPU、GPU、IPU并行” 的时代,GPU或部分CPU专注于业务场景的实现和落地,而IPU专为AI创新者带来更多突破。

五、构建生态链条IPU仍在路上

IPU想要在AI计算中拥有挑战GPU地位的资格,除了在性能和价格上面证明自己的优势之外,还需要在为机器学习框架提供的软件栈上提供更多选择,获得主流AI算法厂商的支持。

在标准生态、操作系统上也需要有广泛的支持,对于开发者有更方便的开发工具和社区内容的支持,才能从实际应用中壮大IPU的开发生态。

一个AI芯片从产出到大规模应用必须要经过一系列的中间环节,包括像上面提到的支持主流算法框架的软件库、工具链、用户生态等等,打通这样一条链条都会面临一个巨大挑战。

目前申请使用Graphcore IPU开发者云的主要是商业用户和高校,个人研究者比较少。IPU开发者云支持当前一些最先进和最复杂的AI算法模型的训练和推理。

和本世纪初的GPU市场一样,在AI芯片市场步入弱编程阶段,如今百家争鸣的局面预计也将很快结束,市场在一轮厮杀后会剩下为数不多的参与者做最终对决。

现在要看的是在发展初期的逐一击破阶段,Graphcore是否真有定义并主控第三类芯片的魄力了。

不过从创新的架构到芯片再到成为革命性的产品,Graphcore从芯片到落地之间的距离,需要易用的软件和丰富的工具来支持,特别是对软件生态依赖程度比较到的云端芯片市场。

IPU不是GPU,既是挑战也是机会。IPU不是GPU的替代品或者类似品,所以不能拿GPU的逻辑来套用IPU的逻辑。

近两年,基于AI 芯片研发的各种产品的井喷,预计未来IPU在各类AI应用中将具有更大的优势。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭