当前位置:首页 > 嵌入式 > 玩转嵌入式
[导读]CSDN TCP/IP不是一个协议,而是一个协议族的统称。里面包括IP协议、IMCP协议、TCP协议。本文总结了几个需要注意的知识点。

素材来源:CSDN
TCP/IP不是一个协议,而是一个协议族的统称。里面包括IP协议、IMCP协议、TCP协议。
这里有几个需要注意的知识点:
  • 互联网地址:也就是IP地址,一般为网络号+子网号+主机号
  • 域名系统:通俗的来说,就是一个数据库,可以将主机名转换成IP地址
  • RFC:TCP/IP协议的标准文档
  • 端口号:一个逻辑号码,IP包所带有的标记
  • Socket:应用编程接口
数据链路层的工作特性:
  • 为IP模块发送和接收IP数据报
  • 为ARP模块发送ARP请求和接收ARP应答(ARP:地址解析协议,将IP地址转换成MAC地址)
  • 为RARP发送RARP请求和接收RARP应答
接下来我们了解一下TCP/IP的工作流程:
数据链路层从ARP得到数据的传递信息,再从IP得到具体的数据信息

IP协议

更多C/C++学习资料,请私信我“代码”,即可获取
IP协议头当中,最重要的就是TTL(IP允许通过的最大网段数量)字段(八位),规定该数据包能穿过几个路由之后才会被抛弃。

IP路由选择

更多C/C++学习资料,请私信我“代码”,即可获取

ARP协议工作原理

更多C/C++学习资料,请私信我“代码”,即可获取

ICMP协议(网络控制文协议)
将IP数据包不能传送的错误信息传送给主机
查询报文
  1. ping查询:主机是否可达,通过计算间隔时间和传送多少个包的数量
  2. 子网掩码
  3. 时间戳:获得当前时间
差错报文
不产生的情况:
  1. ICMP差错报文不产生差错报文
  2. 源地址为零地址、环目地址、广播地址、多播地址

IP路由器选择协议
静态路由选择

更多C/C++学习资料,请私信我“代码”,即可获取

静态路由选择
  1. 配置接口以默认方式生成路由表项,或者使用route add手动添加表项
  2. ICMP报文(ICMP重定向报文)更新表项
  3. 动态路由选择(只使用在路由之间)


RIP(路由信息协议)
分布式的基于距离向量(路由器到每一个目的网络的距离记录)的路由选择协议
router承担的工作:
  1. 给每一个已知路由器发送RIP请求报文,要求给出完整的路由表
  2. 如果接受请求,就将自己的路由表交给请求者;如果没有,就处理IP请求表项(自己部分+跳数/没有的部分+16)
  3. 接受回应,更新路由表
  4. 定期更新路由表(一般为30s,只能说太频繁~)


OSPF(开放最短路径优先协议)
分布式链路状态(和这两个路由器都有接口的网络)协议
  1. 当链路状态发生变化时,采用可靠的洪泛法,向所有的路由器发送信息(相邻的所有路由器的链路状态)
  2. 最终会建立一个全网的拓扑结构图

TCP/IP的三次握手,四次分手
首先我们先来了解TCP报文段

更多C/C++学习资料,请私信我“代码”,即可获取
重要的标志我在图中也有标记,重点了解标志位
ACK:确认序号有效
RST:重置连接
SYN:发起了一个新连接
FIN:释放一个连接

三次握手的过程(客户端我们用A表示,服务器端用B表示)
前提:A主动打开,B被动打开

更多C/C++学习资料,请私信我“代码”,即可获取
  1. 在建立连接之前,B先创建TCB(传输控制块),准备接受客户进程的连接请求,处于LISTEN(监听)状态
  2. A首先创建TCB,然后向B发出连接请求,SYN置1,同时选择初始序号seq=x,进入SYN-SEND(同步已发送)状态
  3. B收到连接请求后向A发送确认,SYN置1,ACK置1,同时产生一个确认序号ack=x+1。同时随机选择初始序号seq=y,进入SYN-RCVD(同步收到)状态
  4. A收到确认连接请求后,ACK置1,确认号ack=y+1,seq=x+1,进入到ESTABLISHED(已建立连接)状态。向B发出确认连接,最后B也进入到ESTABLISHED(已建立连接)状态。
简单来说,就是
  1. 建立连接时,客户端发送SYN包(SYN=i)到服务器,并进入到SYN-SEND状态,等待服务器确认
  2. 服务器收到SYN包,必须确认客户的SYN(ack=i+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN-RECV状态
  3. 客户端收到服务器的SYN+ACK包,向服务器发送确认报ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手
在此穿插一个知识点就是SYN攻击,那么什么是SYN攻击?发生的条件是什么?怎么避免?
在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是 Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址 是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网 络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:
#netstat -nap | grep SYN_RECV


四次分手的过程(客户端我们用A表示,服务器端用B表示)
由于TCP连接时是全双工的,因此每个方向都必须单独进行关闭。这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的链接。收到一个FIN只是意味着这一方向上没有数据流动,既不会在收到数据,但是在这个TCP连接上仍然能够发送数据,知道这一方向也发送了FIN,首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。
前提:A主动关闭,B被动关闭

更多C/C++学习资料,请私信我“代码”,即可获取
有人可能会问,为什么连接的时候是三次握手,而断开连接的时候需要四次挥手?
这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN 报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再 发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。
  1. A发送一个FIN,用来关闭A到B的数据传送,A进入FIN_WAIT_1状态。
  2. B收到FIN后,发送一个ACK给A,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),B进入CLOSE_WAIT状态。
  3. B发送一个FIN,用来关闭B到A的数据传送,B进入LAST_ACK状态。
  4. A收到FIN后,A进入TIME_WAIT状态,接着发送一个ACK给B,确认序号为收到序号+1,B进入CLOSED状态,完成四次挥手。
简单来说就是
  1. 客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送(报文段4)。
  2. 服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
  3. 服务器B关闭与客户端A的连接,发送一个FIN给客户端A(报文段6)。
  4. 客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。
A在进入到TIME-WAIT状态后,并不会马上释放TCP,必须经过时间等待计时器设置的时间2MSL(最长报文段寿命),A才进入到CLOSED状态。为什么?
  1. 为了保证A发送的最后一个ACK报文段能够到达B
  2. 防止“已失效的连接请求报文段”出现在本连接中
OK~是不是很难懂的感觉?那我们来说的“人性化点的”吧


三次握手流程
  1. 客户端发个请求“开门呐,我要进来”给服务器
  2. 服务器发个“进来吧,我去给你开门”给客户端
  3. 客户端有很客气的发个“谢谢,我要进来了”给服务器
四次挥手流程
  1. 客户端发个“时间不早了,我要走了”给服务器,等服务器起身送他
  2. 服务器听到了,发个“我知道了,那我送你出门吧”给客户端,等客户端走
  3. 服务器把门关上后,发个“我关门了”给客户端,然后等客户端走(尼玛~矫情啊)
  4. 客户端发个“我知道了,我走了”,之后自己就走了
OK,先到这吧

精彩推荐:

【1】 编过SPI的程序吗?时钟相位和时钟极性是什么? 【2】I2C操作笔记-以 AT24C04为例 【3】RS485是硬件接口,那么他是怎么实现数据通讯的呢?Modbus-RTU协议解析
【4】 主流协议族TCP/IP协议,对此你了解多少

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭