当前位置:首页 > 技术学院 > 技术前线
[导读]变压器的空载试验是什么?

变压器的空载试验,是从变压器的任一侧绕组施加正弦波额定频率的额定电压,其它绕组开路,测量变压器的空载损耗和空载电流的试验。空载电流以实测的空载电流I0占额定电流Ie的百分数来表示,记为IO。

当试验测得的数值与设计计算值、出厂值、同类型变压器或大修前的数值有显著差异时,应查明原因。

空载损耗主要是铁损耗,即消耗于铁心中的磁滞损耗和涡流损耗。空载时激磁电流流过原边绕组也要产生电阻损耗,如果激磁电流很小,可以忽略不计。空载损耗和空载电流,取决于变压器的容量、铁心构造、硅钢片的制造和铁心制造工艺等因素。

导致空载损耗和空载电流增大的原因主要有:硅钢片间绝缘不良;某一部分硅钢片短路;穿芯螺栓或压板、上轭铁以及其它部分的绝缘损坏而形成短路匝;磁路中硅钢片松动,甚至出现气隙,使磁阻增大(主要使空载电流增大);磁路由较厚的硅钢片组成(空载损耗增加而空载电流减小);采用了劣质的硅钢片(多见于小型配电变压器);各种绕组缺陷,包括匝间短路、并联支路短路,各并联支路中匝数不同及安匝数取得不正确等。此外,由于磁路接地不正确等原因,也会引起空载损耗和电流的增大。对于中小型变压器,在制造过程中,铁心接缝的大小会显著影响空载电流。

分相测量的结果按下述原则判断:

1)由于ab相与bc相的磁路完全对称,因此所测得的ab相与bc相的损耗P0ab和P0bc应相等,偏差一般不应超过3%。

2)由于ac相的磁路要比ab相或bc相的磁路长,故由ac相测得的损耗应较ab相或bc相大(35kV及以下变压器一般在30%~40%,110kV及以上变压器一般在40%~50%)。

例1:一台90MVA,220/121/38.5变压器,I0=0.23%。

单相:pab=41.3kW=pa+pbpa=28kW pc=2.35pa=4.95pb

pac=93.8kW=pa+pcpb=13kW

pbc=79.1kW=pb+papc=65kW

解体发现,C相低压绕组第一匝(出线端)有股间短路,低压绕组为2.3×10.5扁铜线10根并联,外层有两根导线形成短路,部分铜线熔化,经更换避免了一次大事故。

说明:

1)匝间短路虽发展至铜导线部分已熔化,但I0远远小于设计值,三相不平衡也不突出2)匝间短路包括导线间、匝间、层间短路。三者比较,导线间起始环流最小(假设短路处接触电阻相同)。说明空载损耗试验找出短路点是可行的。

例2:一台变压器空载数据如下:

ab励磁,bc短路,p0ab=44.6kW

bc励磁,ac短路,p0bc=44.6kW

ac励磁,ab短路,p0ac=55.2kW

当时,将此单相空载的损耗换算到三相空载损耗,与出厂数据比较相符,认为数据正常。投运后发生轻瓦斯动作。

分析各相的空载损耗的关系是:p0ac/p0ab=p0ac/p0bc=1.26,这个数据是不正常的。经验证明,对于这样大的变压器,它应大于1.4方为正常。在排除绕组及分接开关问题后,认为故障可能在B相铁心,不排除局部放电的可能性。

再作额定电压相空载试验结果如下:

bc励磁,ac短路p0bc=37.6kW,通电持续20分钟无气体,损耗数据不变;

ac励磁,ab短路p0ac=52.6kW,损耗稳定,无气体,持续14分钟后,p0ac突然上升为58.8kW,与此同时产生气体,50秒钟气体达600ml;

ab励磁,bc短路p0ab=37.2kW,持续2分钟后,p0ab突然上升为42.6kW,同时产生气体。从以上试验可以看出,凡是磁通经过A相时,损耗就增大,有气体产生,为了确定故障是否在A相,重复bc励磁,ac短路的空载试验,当达到额定电压后,持续30分钟,损耗p0ab不变,仍无气体产生。

分析:

1)故障在A相磁路(包括AB间的上下铁轭);

2)原来故障在B相,现在又到了A相,而且时隐时现,这证明故障点是可移动的,估计是个金属导体。

经检查,将下铁轭垫打掉,最后终于找到了故障点:在AB相下夹件绕组肢板下面有一片硅钢处将铁轭短路了三分之一。。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

绕组系数、绕组宽度、绕线绝缘厚度、所有绕组的厚度等。此外,漏感还会受到工作频率的影响,随着工作频率的增大,漏感也会增大。

关键字: 变压器 漏感 整流电路

在电力电子与电气工程领域,逆变器和变压器都是不可或缺的重要设备。尽管它们都在电力转换和传输过程中发挥着关键作用,但它们在功能、工作原理和应用场景等方面存在着显著的差异。本文将从科技视角出发,对逆变器和变压器的区别进行深度...

关键字: 逆变器 变压器

增强负载能力:在变压器容量不变的情况下,较小的阻抗能够使得变压器能够承受更大的负载,提高其负载能力。

关键字: 功放变压器 内阻 变压器

本文中,小编将对隔离变压器予以介绍,如果你想对隔离变压器的详细情况有所认识,或者想要增进对隔离变压器的了解程度,不妨请看以下内容哦。

关键字: 变压器 隔离变压器

在这篇文章中,小编将对节约用电的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 节约用电 变压器

大型变压器是整个供电系统的核心设备,其出现故障将对供电的可靠性和系统的正常运行产生严重影响,及时发现和诊断其内部故障,是保证变压器及系统安全、经济运行的重要手段[1]。瓦斯保护是油浸式变压器的主保护之一,对变压器的匝间和...

关键字: 变压器 瓦斯 组分分析

在电子设备和实验室应用中,可调电源因其灵活的电压和电流调节功能而备受青睐。可调电源的最大电流输出是其重要的性能指标之一,对于保证电路的稳定性和安全性具有重要意义。本文将详细探讨可调电源如何实现最大电流输出,并介绍相关的技...

关键字: 电子设备 变压器 可调电源

TDK株式会社(东京证券交易所代码:6762)扩展了爱普科斯 (EPCOS) InsuGate系列 (B78541A) SMT变压器产品组合,推出两款新型元件。新元件采用锰锌 (MnZn) 铁氧体磁芯,尺寸紧凑,支持高工...

关键字: 变压器 电动汽车 耦合电容

在电力系统中,接地变压器是一种特殊的变压器,它承担着保护设备、人身安全和提高供电可靠性的重要职责。接地变压器通过巧妙的工作原理,实现了对中性点的有效接地,进而消除了不平衡电流对系统的影响。本文将详细解析接地变压器的原理及...

关键字: 接地变压器 变压器

本文将详细介绍电子元器件中的变压器(Transformer,简称TR)的原理、结构、分类、应用以及未来发展趋势。通过对变压器的深入解析,旨在帮助读者更好地理解其在电子电路中的作用和价值,为电子工程师在设计和应用中提供有价...

关键字: 变压器 电子电路 电磁感应
关闭
关闭