扫描二维码
随时随地手机看文章

这个玻璃夹(黑色矩形,上中心)用于固定掩膜,其中包含要转移到硅片的芯片图案。
用于固定光照的玻璃夹的近景。
ASML 使用这款由 KUKA Robotics 制造的橙色机器人在洁净室地板上移动重型 EUV 机器。 当 Jos Benschop 于 1997 年加入 ASML 时,他已经离开了 Phillips 一段时间,并涉足了一个担心其未来的芯片行业。几十年来,芯片制造工程师已经掌握了光刻技术。这个概念很简单。你设计芯片的组件——它的导线和半导体——然后将它们蚀刻成一系列“掩模”,就像你制作一个模板来在 T 恤上放置图案一样。然后将每个掩模放在硅片上并通过它照射光线(大致相当于在模板上喷漆)。光使“光刻胶”(resist)变硬,这是晶片表面的化学层;然后其他化学品将该图案蚀刻到硅中。在 60 年代,芯片制造商在此过程中使用可见光,波长小至 400 纳米。然后他们转向 248 nm 的紫外光,并逐渐将其降低到 193 nm——通常称为深紫外光。 但是到了 90 年代末,他们已经尽可能缩小了深紫外线的范围,而且他们不确定如何缩小。他们似乎需要一个新的光源。当时的 ASML 是一家只有 300 人的小公司,曾成功销售其深紫外光刻工具。但他们意识到,为了保持相关性,他们需要进行一些认真的研发。 Benschop 是一位身材高大、棱角分明的高管,态度热情而诙谐,他被聘为该公司新项目的第一位研究员工。他开始参加每年举行两次的大型会议。在那里,来自主要芯片公司和政府机构的深思熟虑的人会摸着下巴,争论下一步使用哪种形式的光。 “What would be thenext kid on the block?”去年夏天我们在 Zoom 上讲话时 Benschop 就是这么说的。专家们琢磨了几个选项,都存在很大的问题。一个想法是使用离子喷雾在芯片上绘制图案;那会奏效,但没有人能想出如何大规模地快速做到这一点。发射电子束也是如此。有些人主张使用波长很小的 X 射线,但他们也面临着挑战。最后的想法是极紫外线,其波长可以低至 13.5 纳米——非常接近 X 射线。看起来不错。 问题是 EUV 需要一种全新形式的光刻机。现有的使用传统的玻璃透镜将光聚焦到晶片上。但是 EUV 光会被玻璃吸收;它停止死亡。如果你想聚焦它,你就必须开发像太空望远镜中使用的那样的曲面镜。更糟糕的是,EUV 甚至会被空气吸收,因此您需要使机器内部成为完全密封的真空。你需要可靠地产生 EUV 光;没有人知道如何做到这一点。 英特尔和美国能源部都修改过这个想法。但这些主要是实验室实验。要创建可行的芯片制造光刻机,您需要开发可以快速工作并批量生产芯片的可靠技术。 经过三年的深思熟虑,2000年ASML决定赌上公司,押注EUV。他们是一家小公司,但如果他们能做到这一点,他们就会成为一个巨人。 Benschop 回忆说,要解决的工程问题太多了,“我们没有动力自己做。”因此,ASML 的高管们开始召集为其现有机器制造组件的公司。第一个电话打给了蔡司,这家德国光学公司多年来一直为 ASML 制造玻璃镜片。 蔡司的工程师拥有 EUV 方面的经验,包括为 X 射线望远镜制造极其精密的透镜和反射镜。诀窍是在 EUV 反射镜的表面涂上交替的硅和钼层,每层只有几纳米厚。它们共同产生了一种图案,可以反射多达 70% 的 EUV 光。 问题在于如何打磨它们。这台机器最终需要 11 个镜子来反射 EUV 光并将其聚焦在芯片上,就像 11 个乒乓球运动员将球从一个球弹到另一个球目标一样。由于目标是蚀刻以纳米为单位的芯片组件,因此每个镜子都必须非常光滑。而最微小的缺陷会使 EUV 光子误入歧途。
左图:这种抛光的光学元件是能量传感器的一部分,有助于控制光刻机内部的光强度。右图:仔细观察抛光装置。此处显示的玻璃片以一定角度设置,以实现正确的斜角。
这些抛光单元用于平滑进入 ASML 的 EUV 机器的组件。
一些像左上角所示的光学器件经过机械抛光。一个组件可能会在多阶段抛光过程中花费数周时间,技术人员会检查到纳米精度的平滑度。
这些涡轮分子泵去除空气和其他气体,以在 EUV 机器内部产生真空——这一点至关重要,因为 EUV 光会被空气吸收。泵以 30,000RPM 的速度旋转并逐个排出单个气体分子。
这个位于 ASML 圣地亚哥工厂的桌面实验装置用于测试液滴发生器组件——EUV 机器光源的一部分。
光刻机内部的反射镜会积聚来自 EUV 光源的锡碎屑。镜子被清洁和抛光后,这台机器用于检查它们。
EUV 光源位于 ASML 洁净室的测试台中。
华为要抢的不是风头,而是客户。





