当前位置:首页 > 电源 > 电源
[导读]1. 引言  开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路 由于电容器在瞬态时可以看成是

1. 引言

  开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路
   

由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3. 通信系统的最大冲击电流限值(AC/DC电源)

图4. 通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源)
 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。
  冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。[!--empirenews.page--]

2. AC/DC开关电源的冲击电流限制方法

2.1 串连电阻法

  对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内

图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)


  串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。
  图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。

2.2 热敏电阻法

  在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。
  用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

2.3 有源冲击电流限制法

对于大功率开关电源,冲击电流限制器件在正常工作时应该短路,这样可以减小冲击电流限制器件的功耗

图6. 有源冲击电流限制电路 (桥式整流时的冲击电流大)


  在图6中,选择R1作为启动电阻,在启动后用可控硅将R1旁路,因在这种冲击电流限制电路中的电阻R1可以选得很大,通常不需要改变110V输入倍压和220V输入时的电阻值。在图6中所画为双向可控硅,也可以用晶闸管或继电器将其替代。
  图6所示电路在刚启动时,冲击电流被电阻R1限制,当输入电容充满电后,有源旁路电路开始工作将电阻R1旁路,这样在稳态工作时的损耗会变得很小。
  在这种可控硅启动电路中,很容易通过开关电源主变压器上的一个线圈来给可控硅供电。由开关电源的缓启动来提供可控硅的延迟启动,这样在电源启动前就可以通过电阻R1将输入电容充满电。[!--empirenews.page--]

3. DC/DC开关电源的冲击电流限制方法

3.1 长短针法

  图7所示电路为长短针法冲击电流限制电路,在DC/DC电源板插入时,长针接触,输入电容C1通过电阻R1充电,当电源板完全插入时,电阻R1被断针短路。C1代表DC/DC电源的所有电容量

图7. 长短针法冲击电流限制电路


  这种方法的缺陷是插入的速度不能控制,如插入速度过快,电容C1还没充满电时,短针就已经接触,冲击电流的限制效果就不好。

  也可用热敏电阻法来限制冲击电流,但由于DC/DC电源的输入电压较低,输入电流较大,在热敏电阻上的功耗也较大,一般不用此方法。

3.2 有源冲击电流限制法

3.2.1 利用MOS管限制冲击电流

  利用MOS管控制冲击电流可以克服无源限制法的缺陷。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以做成冲击电流限制电路。
  MOS管是电压控制器件,其极间电容等效电路如图8所示。

图8. 带外接电容C2的N型MOS管极间电容等效电路


  MOS管的极间电容栅漏电容Cgd、栅源电容Cgs、漏源电容Cds可以由以下公式确定:

公式中MOS管的反馈电容Crss,输入电容Ciss和输出电容Coss的数值在MOS管的手册上可以查到。[!--empirenews.page--]
  电容充放电快慢决定MOS管开通和关断的快慢,为确保MOS管状态间转换是线性的和可预知的,外接电容C2并联在Cgd上,如果外接电容C2比MOS管内部栅漏电容Cgd大很多,就会减小MOS管内部非线性栅漏电容Cgd在状态间转换时的作用。
  外接电容C2被用来作为积分器对MOS管的开关特性进行精确控制。控制了漏极电压线性度就能精确控制冲击电流。
 
  电路描述:
  图9所示为基于MOS管的自启动有源冲击电流限制法电路。MOS管 Q1放在DC/DC电源模块的负电压输入端,在上电瞬间,DC/DC电源模块的第1脚电平和第4脚一样,然后控制电路按一定的速率将它降到负电压,电压下降的速度由时间常数C2*R2决定,这个斜率决定了最大冲击电流。
  

图9. 有源冲击电流限制法电路

D1用来限制MOS管 Q1的栅源电压。元器件R1,C1和D2用来保证MOS管Q1在刚上电时保持关断状态。
  上电后,MOS管的栅极电压要慢慢上升,当栅源电压Vgs高到一定程度后,二极管D2导通,这样所有的电荷都给电容C1以时间常数R1×C1充电,栅源电压Vgs以相同的速度上升,直到MOS管Q1导通产生冲击电流。
其中Vth为MOS管Q1的最小门槛电压,VD2为二极管D2的正向导通压降,Vplt为产生Iinrush冲击电流时的栅源电压。Vplt可以在MOS管供应商所提供的产品资料里找到。

  MOS管选择
  以下参数对于有源冲击电流限制电路的MOS管选择非常重要:
l 漏极击穿电压 Vds 
  必须选择Vds比最大输入电压Vmax和最大输入瞬态电压还要高的MOS管,对于通讯系统中用的MOS管,一般选择Vds≥100V。
l 栅源电压Vgs
  稳压管D1是用来保护MOS管Q1的栅极以防止其过压击穿,显然MOS管Q1的栅源电压Vgs必须高于稳压管D1的最大反向击穿电压。一般MOS管的栅源电压Vgs为20V,推荐12V的稳压二极管。
其中Pout为DC/DC电源的最大输出功率,Vmin为最小输入电压,η为DC/DC电源在输入电压为Vmin输出功率为Pout时的效率。η可以在DC/DC电源供应商所提供的数据手册里查到。MOS管的Rds_on必须很小,它所引起的压降和输入电压相比才可以忽略。

图10. 有源冲击电流限制电路在75V输入

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

DC/DC开关电源由于其效率高、体积小等优点是现代电子产品设计中不可或缺的一环,其重要性不言而喻。

关键字: 电磁兼容性 DC/DC 开关电源

随着科技的快速发展,电子设备已经深入到我们生活的方方面面,无论是智能手机、笔记本电脑还是智能家居设备,它们都需要稳定可靠的电源供应来保证其正常运行。在这个背景下,开关电源适配器作为电源管理的重要组件,发挥着不可或缺的作用...

关键字: 开关电源 电源适配器

在科技飞速发展的今天,电子设备已经成为了我们日常生活中不可或缺的一部分。而在这些电子设备的内部,一个不可或缺的组成部分便是开关电源芯片。作为电源管理集成电路的核心,开关电源芯片在电子设备中发挥着至关重要的作用。本文将深入...

关键字: 开关电源 芯片

开关电源芯片作为电子设备中的重要组成部分,是实现电源转换和管理的核心器件。随着科技的不断进步,开关电源芯片的种类也在不断增加,各具特色,满足了不同设备和应用场景的需求。本文将深入探讨开关电源芯片的种类及其科技应用,带领读...

关键字: 开关电源 芯片

开关电源作为电子设备中的核心部件,负责将交流电转换为稳定的直流电,为设备的正常运行提供可靠的电力保障。然而,随着使用时间的增长和外部环境的变化,开关电源也可能出现故障,影响其正常工作。本文将重点介绍开关电源的常见故障及其...

关键字: 开关电源 电源 电子设备

开关电源作为电子设备中的关键部件,其稳定性和可靠性对于设备的正常运行至关重要。然而,在使用过程中,开关电源有时也会出现故障,需要进行维修。本文将为您详细介绍开关电源的维修步骤,帮助您快速解决电源问题,恢复设备的正常使用。

关键字: 开关电源 电源 电子设备

随着科技的飞速发展,电子设备已经渗透到我们生活的方方面面,从智能手机、电脑到家用电器,无一不需要稳定的电力供应。而在这背后,开关电源作为电力转换和管理的关键部件,正发挥着至关重要的作用。本文将深入探讨开关电源在现代科技中...

关键字: 开关电源 电源

在科技日新月异的今天,DC-DC开关电源作为电源管理领域的关键技术,已经广泛应用于各类电子设备中。它以其高效、稳定、可靠的特性,为各类设备提供了稳定可靠的电力保障。那么,DC-DC开关电源是如何工作的呢?本文将深入探索其...

关键字: dc-dc开关电源 开关电源

在电力电子领域中,开关电源是一种重要的电源转换装置,其广泛应用于各种电子设备中。推挽开关电源是开关电源中的一种重要类型,以其高效率、高可靠性和优秀的电磁兼容性而受到广泛关注。本文将详细解析推挽开关电源的工作原理,以便读者...

关键字: 推挽开关电源 开关电源

反激式开关电源的典型电路如下图所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

关键字: 反激 开关电源 高频变换器
关闭
关闭