当前位置:首页 > 电源 > 电源
[导读]1、 概述 2、 基本同步整流电路如图1所示电路,其副边为基本同步整流电路,关键波形见图2。当原边主开关管Q1开通时,通过变压器T1向副边传输能量,副边工作在整流状态,此

1、 概述

 

 

2、 基本同步整流电路

如图1所示电路,其副边为基本同步整流电路,关键波形见图2。当原边主开关管Q1开通时,通过变压器T1向副边传输能量,副边工作在整流状态,此时SR1的Vgs电压为变压器副边绕组电压,极性为正,SR2的Vgs电压为零,因而SR1导通,SR2关断;当原边主开关管Q1关断时,变压器T1原边绕组的励磁电流和负载电流流经C1,C1上的电压开始上升,当C1电压升至Vin时,原边绕组中的负载电流下降为0,在励磁电流的作用下原边励磁电感Lm与电容C1进行谐振,谐振电压Vr为正弦波,谐振周期Tr=2π√LmC2,谐振电压Vr加到变压器T1的原边绕组上使T1磁复位,同时,副边也进入到续流状态,此时SR1的Vgs电压为0,SR2的Vgs电压为变压器副边绕组电压,电压波形为正弦波,极性为正,因而SR1关断,SR2导通;这样的工作状态会周期性重复

 

 

3、基本同步整流电路的问题

3.1、续流管的驱动

如图2中SR2的Vgs波形,由于驱动SR2的是正弦波谐振电压,受主开关的占空比和谐振参数的影响,电压波形变化较大,驱动效果也不理想,模块效率较低。

3.2、输出并联

将两个采用基本同步整流电路的DC-DC模块电源输出并联将会产生很多问题,其中的一个严重问题就是“电流反灌”。下面通过一个简单的例子说明“电流反灌”现象。如图3所示,当模块2正常工作而模块1被关断时,模块2的输出电压VOUT会通过模块1内部的L、T1的副边绕组分别加到SR1、SR2的G、S之间,SR1、SR2会因此导通并流过较大的电流,同时,模块2的输出电压VOUT会被拉低。对于模块1来说,此时的电流是反向流入模块的,称之为“电流反灌”现象。在N个模块并联的系统中,设每个模块的最大输出电流为Io,当其中一个模块被关断时,流入这个模块的反灌电流将会达到(N-1)×IO,这将会带来严重的后果。

 

 

4、改进的同步整流电路

4.1、电路描述

改进的同步整流电路如图4,副边同步整流管SR1移到上端,SR1、SR2采用共漏极接法,从变压器抽取N1、N2绕组,N1绕组用于驱动SR1,N2绕组经半波整流用于驱动SR2,原边同步信号SYNC经隔离,驱动小功率MOSFET S1,用于关断SR2。其中的隔离驱动电路可以采用类似图5的典型电路。关键信号的时序关系如图6所示。

 

 

 

 

4.2、续流管的驱动

改进的同步整流电路通过半波整流的方式驱动SR2,驱动信号通过二极管D1给SR2的G、S间的等效电容Ci充电,由于MOSFET门极的输入阻抗很大,Vgs将保持驱动信号的峰值不变,直到SYNC信号导通S1,将SR2的G、S间的电荷放掉。因而SR2的Vgs波形接近方波,并能维持到续流过程结束(见图6中SR2的Vgs波形)。改进后的效率会更高。[!--empirenews.page--]

4.3、输出并联

改进后的同步整流电路能够支持多个模块输出并联。如图7所示,由于采用单独的绕组N1、N2驱动同步整流管SR1、SR2,同步整流管的门极与输出端VOUT没有直接联系,当模块1 关机后,SR1、SR2的驱动电压均为0,相当于二极管特性。在其它工作状态,如启动、待机、动态负载等情况下,并联模块也能正常工作。

5、应用结果

 

 

改进的同步整流技术应用在48V输入,5V@20A输出的DC-DC模块电源上,效率可达到90%以上。图8显示了正常工作期间同步整流管的驱动波形,其中通道1是续流管的驱动波形,通道2是整流管的驱动波形。可见两管的驱动波形既保证了适当的死区以避免直通,又能使通过二极管导通的时间尽量缩短,因而同步整流的效率很高。图9显示了两个模块并联,当其中一个模块关机时,在输出并联母线上的电压波形,其中通道1是模块1的关机信号,通道2是输出并联母线上的电压波形。可见当其中一个模块关机时,输出并联母线上的电压不受影响。图10显示了单个模块在输出轻载和空载情况下关机的输出端电压波形,可见在关机后模块的输出电压平缓下降,不会出现振荡,其特性与肖特基整流的模块电源基本一致。

 

 

 

 

 

 

 

 

6、总结

本文针对基本同步整流技术在应用中存在的一些问题进行了分析,并提出了改进的同步整流技术和具体的电路,该技术已应用在具有工业标准的砖系列DC-DC模块电源中,并在实际应用中表现出优良的性能和兼容性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移远通信宣布,其自研蓝牙协议栈DynaBlue率先通过蓝牙技术联盟(SIG)BQB 6.1标准认证。作为移远深耕短距离通信...

关键字: 蓝牙协议栈 移远通信 COM BSP

上海2025年9月9日 /美通社/ -- 为全面落实党中央、国务院和上海市委、市政府关于加快发展人力资源服务业的决策部署,更好发挥人力资源服务业赋能百业作用,8月29日,以"AI智领 HR智链 静候你来&quo...

关键字: 智能体 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付与一汽出行达成合作,为其自主研发的"旗驭车管"车辆运营管理平台提供全流程支付通道及技术支持。此次合作不仅提升了平台对百余家企业客户的运营管理效率...

关键字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制药(PharmaEngine, Inc.)发现的新一代PRMT5抑制剂PEP0...

关键字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶

推进卓越制造,扩大产能并优化布局 苏州2025年9月5日 /美通社/ -- 耐世特汽车系统与苏州工业园区管委会正式签署备忘录,以设立耐世特亚太总部苏州智能制造项目。...

关键字: 智能制造 BSP 汽车系统 线控

慕尼黑和北京2025年9月4日 /美通社/ -- 宝马集团宣布,新世代首款量产车型BMW iX3将于9月5日全球首发,9月8日震撼亮相慕尼黑车展。中国专属版车型也将在年内与大家见面,2026年在国内投产。 宝马集团董事...

关键字: 宝马 慕尼黑 BSP 数字化

北京2025年9月4日 /美通社/ -- 在全球新一轮科技革命与产业变革的澎湃浪潮中,人工智能作为引领创新的核心驱动力,正以前所未有的深度与广度重塑各行业发展格局。体育领域深度融入科技变革浪潮,驶入数字化、智能化转型快车...

关键字: 人工智能 智能体 AI BSP

上海2025年9月2日 /美通社/ -- 近日,由 ABB、Moxa(摩莎科技)等八家企业在上海联合发起并成功举办"2025 Ethernet-APL 技术应用发展大会"。会议以"破界•融合...

关键字: ETHERNET 智能未来 BSP 工业通信
关闭