当前位置:首页 > 电源 > 电源
[导读]  移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解

  移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。

  主电路分析

  这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。

  

 

  图1 1.2kw软开关直流电源电路结构简图

  其基本工作原理如下:

  当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。

  由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。

  当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。

  关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。

  VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2.由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3.Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。

  ZVZCS PWM全桥变换器拓扑的理想工作波形如图2所示,其中Uab表示主电路图3中a、b两点之间的电压,ip为变压器T原边电流,Ucb为阻断电容Ub上的电压,Urect是副边整流后的电压。

  

 

  图2 理想工作波形

  UC3875的主控制回路设计

  为了实现主回路开关管ZVZCS软开关,采用UC3875为其设计了PWM移相控制电路,如图3所示。考虑到所选MOSFET功率比较大,对芯片的四个输出驱动信号进行了功率放大,再经高频脉冲变压器T1、T2隔离,最后经过驱动电路驱动MOSFET开关管。

  

 

  图3 PWM移相控制电路

  整个控制系统所有供电均用同一个15V直流电源,实验中设置开关频率为70kHz,死区时间设置为1.5μs,采用简单的电压控制模式,电源输出直流电压通过采样电路、光电隔离电路后形成控制信号,输入到UC3875误差放大器的EA,控制UC3875误差放大器的输出,从而控制芯片四个输出之间的移相角大小,使电源能够稳定工作,图中R6、C5接在EA和E/AOUT之间构成PI控制。在本设计中把CS+端用作故障保护电路,当发生输出过压、输出过流、高频变原边过流、开关管过热等故障时,通过一定的转换电路,把故障信号转换为高于2.5V的电压接到CS+端,使UC3875四个输出驱动信号全为低电平,对电路实现保护。

  图4是开关管的驱动电路。隔离变压器的设计采用AP法,变比为1:1.3的三绕组变压器。UC3875输出的单极性脉冲经过放大电路、隔离电路和驱动电路后形成+12V/一5V的双极性驱动脉冲,保证开关管的稳定开通和关断。

  

 

  图4 开关管的驱动电路[!--empirenews.page--]

  仿真与实验结果分析

  PSpice是一款功能强大的电路分析软件,对开关频率70kHz的ZVZCS软开关电源的仿真是在PSpice9.1平台上进行的。

  实验样机的主回路结构采用图1所示的电路拓扑,阻断二极管采用超快恢复大功率二极管RHRG30120,其反向恢复时间在100ns以内,满足70kHz开关频率的要求。开关管MOSFET采用IXYS公司的IXFK24N100开关管,这种型号MOS管自身反并有超快恢复二极管,其反向恢复时间约250ns。

  图5是超前桥臂开关管驱动电压与管压降波形图,(a)为仿真波形、(b)为实验波形,可见超前臂开关管完全实现了ZVS开通,VT1、VT2关断时是依赖其自身很小的结电容来实现的,从图中可以看出,关断时也基本实现了ZVS关断。

  

 

  图5 超前桥臂开关管驱动电压与管压降波形图

  

 

  图6 滞后桥臂开关管驱动电压与电流波形图

  图6是滞后桥臂开关管驱动电压与电流波形图,(a)为仿真波形、(b)为实验波形;

  图7是滞后桥臂开关管管压降与电流波形图,(a)为仿真波形、(b)为实验波形。

  

 

  图7 滞后桥臂开关管VT3和VT4实现ZCS关断

  从图6、图7可以看出滞后臂开关管VT3、VT4很好地实现了ZCS关断,关断时开关管电流已经为零。滞后臂开关管完全开通之前,开关管电流也几乎为零,基本实现了ZCS开通。而且滞后桥臂开关管VT3、VT4可以在很大负载范围内实现ZCS开关。

  图8是两桥臂中点之间的电压Uab的波形图,(a)为仿真波形、(b)为实验波形。

  

 

  图8 Uab的波形

  图9是阻断电容Cb上的电压U曲波形,(a)为仿真波形、(b)为实验波形。

  

 

  图9 Ucb的波形

  从上图可以看出,由于有Ucb的存在,Uab不是一个方波。当Uab=0时,阻断电容Cb上的电压Ucb使原边电流ip逐渐减小到零,由于阻断二极管的阻断作用,ip不能反向流动,从而实现了滞后桥臂的ZCS开关。

  综上所述,我们能够发现,采用UC3875作为核心控制器件的好处是结构简单、性能可靠。并且主电路的开关管全部实现了软开关,同时还避免了ZVS以及ZCS模式当中常见的一些错误。能够显着的减少在开关过程当中开关管发生的损耗,进而提高开关频率,减少电源的体积并减轻重量。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

理想的软开关过程是电流或电压先降到零,电压或电流再缓慢上升到断态值,所以开关损耗近似为零。

关键字: 软开关

采用SiC器件研制了一款全砖2 kW输出的移相全桥DC/DC变换器,并运用原边钳位二极管电路对输出整流管的电压尖峰进行抑制。现首先介绍移相全桥软开关拓扑的工作原理和整流管尖峰抑制电路,随后对变换器的关键参数进行设计,并给...

关键字: 移相全桥 DC/DC变换器 钳位二极管 零压开关

移相全桥和全桥LLC的核心区别在于拓扑结构、开关方式和适用场景‌。移相全桥采用硬开关技术,通过相位差调节输出,适用于中高功率场景;全桥LLC利用谐振网络实现软开关,效率更高,更适合高频高密度应用

关键字: 移相全桥 全桥LLC

在现代电力电子领域,反激式转换器以其结构简单、成本低廉、易于多路输出等特点,在中小功率场合得到了广泛应用。然而,设计一个高效的反激式转换器并非易事,特别是变压器的设计与软开关技术的实现,直接关系到转换器的性能与效率。本文...

关键字: 反激式转换器 变压器 软开关

随着电子技术的飞速发展,开关电源作为电子设备中的关键组件,其性能要求日益提高。传统的硬开关技术因其在开关过程中产生较大的损耗和电磁干扰(EMI),已难以满足现代电子设备对高效率、低噪声的需求。因此,软开关技术应运而生,其...

关键字: 软开关 ZVS ZCS

在电力电子领域,随着对电源系统性能要求的不断提高,如何精确控制输出电流大小成为了关键技术问题。移相全桥(PSFB)变换器因其具有软开关特性、高效率等优点,在众多应用中得到了广泛采用。而原边峰值电流控制作为 PSFB 变换...

关键字: 电源系统 移相全桥 软开关

电流传感器是感受到被测电流信息的设备,小小的电源设备已经融合了越来越多的新技术。例如开关电源、硬开关、软开关、稳压、线性反馈稳压、磁放大器技术、数控调压、PWM、SPWM、电磁兼容等等。

关键字: 硬开关 软开关

例如开关电源、硬开关、软开关、稳压、线性反馈稳压、磁放大器技术、数控调压、PWM、SPWM、电磁兼容等等。

关键字: 硬开关 软开关

在电力电子领域,移相全桥电路作为一种高效、灵活的电能转换拓扑结构,被广泛应用于各种大功率电源和变换器中。然而,在实际应用中,移相全桥电路的原边电流波形和副边整流电压波形常常会出现振荡现象,这不仅影响电路的稳定性和效率,还...

关键字: 移相全桥 电能转换 变换器

效率和功率密度都是电源转换器设计中的重要因素。每个造成能量损失的因素都会产生热量,而这些热量需要通过昂贵且耗电的冷却系统来去除。软开关和碳化硅 (SiC) 技术的结合可以提高开关频率,从而可以减小临时存储能量的无源元件的...

关键字: 软开关 SiC
关闭