当前位置:首页 > 电源 > 电源
[导读]随着开关频率和开关速度不断的提升,在使用开关型的DC/DC电源的时候,要特别关注输入输出电源的纹波。但是测量DC/DC电源的纹波和噪声没有一个行业标准。不同厂家的测试环境

随着开关频率和开关速度不断的提升,在使用开关型的DC/DC电源的时候,要特别关注输入输出电源的纹波。但是测量DC/DC电源的纹波和噪声没有一个行业标准。不同厂家的测试环境以及测试标准都不太一样,导致很多人很迷惑。这篇文章提供了一个简单可靠的电源纹波的测试方法,这种测试方法的可复现性很好,并且不需要带宽很高的示波器和探头。

这篇文章适合用于测量开关型DC/DC转换器的输入以及输出纹波,包括电荷泵,但是不适用于低压差稳压器(LDO)。

纹波和噪声Ripple and Noise

纹波和噪声指的是在DC/DC转换器输入输出电容上的交流耦合信号,在测试中,一般我们会将这个信号带宽限制到20MHz。

纹波和噪声主要由以下四项组成。

--电源纹波(PWM frequency RIPPLE),和PWM频率相同的。这个纹波表示了输入和输出电容上的充放电过程,在最大负载时,这个纹波达到最大值。这种电压的波动可以通过加大输入输出电容、加大输出电感来减小。

--开关噪声(SWITCHING NOISE),这种噪声发生在电源的开关时刻。虽然开关噪声的重复周期和PWM频率一致,但是振荡频率一般都很高。开关噪声新的振幅一般取决于电源芯片、电路寄生参数以及PCB布板。

--工频噪声(Recfified main RIPPLE),一般是交流供电频率的两倍。我国供电频率是50Hz,所以它的纹波主要来自工频50Hz变压器。大小取决于整流电路的类型。对于半波整流,50Hz;对于全波整流,是100Hz;对于三相全波整流,300Hz。

--非周期性的随机噪声(NOISE),和AC电源开关频率均无关。

由于现在AC-DC部分大多采用模块开关电源,后级DC/DC电路工频噪声比较小;随机噪声无法量化。所以一般不考虑这两项的影响,典型的开关电源纹波噪声如下图所示。我们需要测量的是纹波以及开关噪声之和。

接下来描述了在错误以及正确测量电源纹波噪声的两种方式。

下图是一个错误的测量方式,因为示波器的地线会拾取辐射噪声。示波器的地线和信号探头形成的环路形成了一个天线。环路面积越大,在电源PWM切换时,示波器接受到的开关噪声就越大。

在测量中,如何减小拾取的辐射噪声?最简单可靠的方法是采用一个接地环来测量电源纹波以及噪声。为了进一步的降低测试误差,可以将示波器探头和地线直接放在电源输出电容得两端。如下图所示,采用这种方法,在信号探头和地线之间的环路面积很小,所以测量中带来误差的噪声几乎可以忽略。


因为现在的示波器探头都附带有接地环,所以,不再详细描述如何做一个接地环了。原文里有相关描述,见文末链接。

实测案例(Example)

下图描述了采用两个不同的测试方法得到的Vout波形。电源电路是一个BUCK转换电路(AAT1121),工作在1.5MHz的开关频率,输出电压为1.8V/250mA。示波器采用全带宽测试。可以看到伴随着PWM开关,在绿色的trace2有一个很高的噪音以及振铃,但是trace3上却没有明显的噪声。通过对比可以看到,测试方法的选择对结果的准确性很关键。

下图是采用20MHz带宽限制测试到的电源的纹波以及噪声。示波器20MHz的带宽限制是为了防止无源探头带入的共模噪声。可以看到AAT1121BUCK转换器的纹波噪声为10mVp-p,几乎看不到开关噪声。这主要是归功于BUCK控制器的低噪声设计,良好的PCB设计,以及恰当的测试方法。

总结

下面总结一下正确的测量DC/DC开关电源纹波和噪音的方法。

1)限制示波器带宽为20MHz(大多中低端示波器档位限制在20MHz,高端产品还有200MHz带宽限制的选择),目的是避免数字电路的高频噪声影响纹波测量,尽量保证测量的准确性。

2)设置耦合方式为交流耦合,方便测量(以更小档位来仔细观测纹波,不关心直流电平)。

3)保证探头接地尽量短(测量纹波动辄上百mV的主要原因就是接地线太长),尽量使用探头自带的原装测试短针。如果没有测试短针,可以拆除探头的接地线和外壳,露出探头地壳,自制接地线缠绕在探头地壳上,保证接地线长度小于1cm。

与非网原创内容,未经许可,不得转载!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

噪声频谱密度和信噪比是两种测量声音噪声的常用技术。噪声频谱密度是一种以频率为基础的技术,它可以帮助我们了解声音的特性,以及噪声的频率分布。信噪比是一种以信号强度为基础的技术,它可以帮助我们了解声音的强度,以及噪声的信号强...

关键字: 噪声 频谱

在现代电子系统中,电源噪声问题愈发凸显,严重影响着设备的性能与稳定性。从智能手机、笔记本电脑到工业控制设备、医疗仪器,各类电子设备都面临着电源噪声的挑战。例如,在医疗成像设备中,电源噪声可能导致图像出现干扰条纹,影响诊断...

关键字: 电源 噪声 干扰

EMI 滤波器,这一看似简单的电子元件,实则蕴含着高科技的智慧。它如同电子世界的 “清道夫”,主要应用于电源线和信号线上。其工作原理基于电感、电容等元件的巧妙组合,宛如一场精密的交响乐演奏。电感对高频信号呈现出高阻抗,如...

关键字: EMI 滤波器 噪声

在当今的电子设备设计领域,电源的高效性与稳定性始终是工程师们关注的核心要点。对于众多对噪声极为敏感的设备而言,找到一款既能提供高效动力支持,又能确保低噪声稳定运行的电源,无疑是整个设计过程中的关键环节。在这一探索过程中,...

关键字: 电源 噪声 滤波器

开关电源(SMPS)凭借高效、小型化的优势,广泛应用于电子设备中。但开关电源在工作时,因高频开关动作、元器件特性等因素,容易产生噪声。这些噪声不仅会影响自身性能,还可能干扰周边电子设备,因此准确测量开关电源中的噪声至关重...

关键字: 开关电源 噪声 测量

在电子设备的电源供应领域,如何实现高效且稳定的供电一直是工程师们不懈追求的目标。开关稳压器因其较高的效率在众多应用中得到广泛使用,然而,其固有的噪声问题却常常成为限制其进一步应用的瓶颈。尤其是在为对噪声极为敏感的设备,如...

关键字: 稳压器 噪声 滤波器

在现代电子系统中,对于电源稳定性和低噪声的要求日益严苛。低压差稳压器(LDO)作为一种关键的电源管理器件,广泛应用于为高速时钟、模数转换器(ADC)、数模转换器(DAC)、压控振荡器(VCO)和锁相环(PLL)等对电源噪...

关键字: 低压差稳压器 噪声 LDO

在现代电子设备中,开关电源因其高效、紧凑等优点而得到广泛应用。其中,反激式开关电源以其简单的拓扑结构和较低的成本,在中小功率应用场景中占据了重要地位,如手机充电器、LED 驱动电源等。然而,反激式开关电源输出电压中存在的...

关键字: 纹波 反激式 输出电压

BUCK 电路的纹波噪声主要源于其工作原理中的开关动作。当电路中的开关管(如 MOS 管)导通和关断时,电感电流会发生变化,导致输出电压产生波动,这便是输出电压纹波的主要成因。同时,电路中的寄生电感和电容,如 PCB 走...

关键字: 电感电流 高频振荡 纹波噪声

在弱信号模拟电路中,噪声是影响电路性能的关键因素。电路噪声可能导致信号失真、精度下降,甚至使电路无法正常工作。而供电方式的选择对弱信号模拟电路的噪声水平有着至关重要的影响。不同的供电方式会引入不同类型和程度的噪声,因此,...

关键字: 弱信号 模拟电路 噪声
关闭