当前位置:首页 > 电源 > 电源
[导读]引言手持式电子设备在我们的日常生活中起着重要的作用。由于可靠性是最重要,因此手持式设备采取了谨慎的工程设计,并采用了轻量型电源,以在正常条件下确保可靠的使用。但

引言

手持式电子设备在我们的日常生活中起着重要的作用。由于可靠性是最重要,因此手持式设备采取了谨慎的工程设计,并采用了轻量型电源,以在正常条件下确保可靠的使用。但是,不管多少谨慎的工程设计都无法避免他们在用户手中遭遇"粗暴对待".例如:当工厂里的工人失手跌落一个条形码扫描仪而导致电池跳出时,会发生什么? 此类事件用电子学的方法是不能预知的,而且在未提供某种形式的"安全网"(一种存储了充足能量的短期电源保持系统,用于提供备用电源,直到可以更换电池或者能将数据存储到永久性存储器中为止) 之情况下,保存在易失性存储器中的重要数据将会丢失。

超级电容器具有紧凑、坚固和可靠的特点,并能支持用于应对短期掉电过程中后备系统的电源要求。与电池相似,它们也需要在输出端进行谨慎的充电和功率调节。LTC3226是一款具有一个电源通路(PowerPath) 控制器的两节串联超级电容器充电器,可简化后备系统的设计。特别地,该器件包含一个具可编程输出电压和自动电池电压平衡功能的充电泵超级电容器充电器、一个低压差稳压器和一个用于实现正常模式与后备模式之间切换的电源故障比较器。低输入噪声、低静态电流和紧凑的占板面积使LTC3226成为紧凑、手持和电池供电型应用的理想选择。这款器件采用3mm x 3mm 16引脚QFN封装。

后备电源应用

图1示出了一款采用超级电容器组的电源保持系统,该电容器组在没有电池电源的情况下提供持续约45s的165mW待机功率的容量。一个LDO负责在后备模式期间将超级电容器组的输出转换为一个恒定电压电源。

图1:采用超级电容器的典型电源后备系统

图1:采用超级电容器的典型电源后备系统

采用LTC3226可以轻松设计电源后备系统。例如:取一个在采用单节锂离子电池供电时具有150mA工作电流和50mA待机电流(ISB)的器件。为确保接入一个已充电电池,电源故障比较器(PFI)的高电平触发点设定为3.6V.当电池电压达到3.15V时,器件进入待机模式;而当电池电压为 3.10V (VBAT (MIN)) 时,则器件进入后备模式,并将保持电源的时间周期 (tHU) 初始设置为大约45s.

待机模式触发电平受控于一个外部比较器电路,而后备模式触发电平则受控于PFI比较器。当处于后备模式时,必须禁止器件进入全面运行模式,以避免造成超级电容器过快地放电。

设计从设定PFI触发电平开始。R2被设定为121k,R1的阻值应把PFI引脚上的PFI触发电平(VPFI)设定至1.2V,其计算公式如下:

据此将R1设定为191k.

VIN引脚上的迟滞必需延长以满足3.6V的触发电平。这可以通过在PFI引脚和PFO引脚之间增设一个电阻器与二极管的串联组合来实现。VIN(HYS)为

0.5V,VPFI(HYS)为20mV,而Vf为0.4V。

R8设定为348k.

通过将R7设定为80.6k,并计算R6阻值,把LDO后备模式输出电压设定为3.3V.VLDO (FB)为 0.8V。

将R6设定为255k.

串联连接的超级电容器上的满充电电压被设定为5V.这是利用位于CPO引脚与CPO_FB引脚之间的一个分压器网络完成的。R5设定为1.21M,并计算R4阻值。VCPO (FB)为 1.21V.

设定R4 = 3.83M.

在后备模式中,当超级电容器组上的电压开始接近VOUT时,在计算tHU结束时超级电容器上的最小电压必须将两个超级电容器的ESR和LDO的输出电阻考虑在内。假设每个超级电容器的ESR为100mΩ,而LDO输出电阻为200mΩ,这将由于50mA待机电流的原因而使VOUT (MIN)增加20mV.VOUT (MIN)设定为3.1V,从而在超级电容器组上产生一个1.88V的放电电压 (ΔVSCAP)。现在,可以确定每个超级电容器的大小。

每个超级电容器均选择为一个由Nesscap公司提供的3F/2.7V电容器 (ESHSR-0003C0-002R7)。

图2示出了在具有一个50mA负载时系统的实际后备时间。由于在实际电路中使用了较大的3F电容器,因此后备时间为55.4s.

图2:支持50mA负载的后备时间

图2:支持50mA负载的后备时间

结论

高性能手持式设备需要能够为设备提供足够长时间供电的电源后备系统,以在电池突然被拿掉时可安全地保存易失性数据。超级电容器可在此类系统中充当紧凑和可靠的电源,但是它们需要用于充电及输出电压调节的专用控制系统。LTC3226通过把一个两节超级电容器充电器、PowerPath控制器、一个LDO稳压器和一个电源故障比较器全部集成在单个3mm x 3mm 16引脚QFN封装之中,使得能够轻而易举地构建一款完整的电源后备解决方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国,北京-2025年9月4日-电源管理解决方案供货商Lotus Microsystems ApS与全球排名前十大的代理商益登科技(TWSE: 3048)今日共同宣布,双方签署亚太地区战略性代理合作协议。

关键字: 电源 热管理 电子设计

【2025年8月28日,德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布与台达电子工业股份有限公司(Delta Electronics,...

关键字: 数据中心 电源 AI

现代社会对计算能力的需求日益增长。人工智能 (AI) 的飞速发展推动了数据量的爆炸式增长,包括数据的创建、处理和存储。AI已渗透到现代生活的方方面面,从汽车到购物方式无所不在。在工业领域,边缘计算改变了制造业,创造了一个...

关键字: 微处理器 电源 人工智能

在电子设备的世界里,稳定的电源供应如同基石,支撑着各种电路和器件的正常运行。线性稳压电源和开关稳压电源作为两种主流的电源类型,各自有着独特的工作方式、性能特点以及适用场景。深入了解它们,对于电子工程师进行合理的电源选型和...

关键字: 线性稳压 开关稳压 电源

开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。

关键字: 开关电源 电源

PLC将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: PLC 电源

本文中,小编将对PLC予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: PLC 电源

在现代电子系统中,电源的高效稳定运行至关重要。开关模式电源(SMPS)因其较高的效率,在高电流应用中得到广泛使用。而若能够精细调节电源的输出电压,将为系统带来诸多益处,如移除电源路径上的容差和压降、验证系统限幅的运作,或...

关键字: 电源 效率 数字电位计

在现代电子系统中,电源噪声问题愈发凸显,严重影响着设备的性能与稳定性。从智能手机、笔记本电脑到工业控制设备、医疗仪器,各类电子设备都面临着电源噪声的挑战。例如,在医疗成像设备中,电源噪声可能导致图像出现干扰条纹,影响诊断...

关键字: 电源 噪声 干扰

在科技产品日新月异的发展进程中,电源适配器这一不起眼却又至关重要的配件,也正经历着深刻的变革。从早期大而笨重的形态,逐渐向小而轻便转变,这场 “改朝换代” 背后,是技术不断革新的强大驱动力。

关键字: 电源 适配器 电子设备
关闭