当前位置:首页 > 电源 > 数字电源
[导读]使用PSOC片上系统芯片CY8C2714,结合电容式感应原理,可设计一种基于PSoC微处理器芯片的电式感应按键,实现按键的非接触式可靠设计。

  :非接触式操作界面正逐渐取代普通按键,成为常用的人机交互工具。使用PSOC片上系统芯片CY8C2714,结合电容式感应原理,可设计一种基于PSoC微处理器芯片的电式感应按键,实现按键的非接触式可靠设计。PSoC片上系统芯片是具有高速内核、快闪内存和SRAM数据内存的高性能芯片,具有独立的程序存储器和数据存储器总线,设计者可自配置模拟模块和数字模块。

关键词:电容式  PSoC非接触式  感应按键

 

    电容式感应技术正在迅速成为面板操作和多媒体交互的全新应用技术,其耐用性和降低BOM成本方面的优势,使这种技术在非接触式操作界面上得到广泛的应用。本文采用PSOC片上系统芯片,实现了非接触式、稳定可靠的电容式感应按键的设计。

 

1  PSoC片上系统

    PSoC微处理器由处理器内核、系统资源、数字系统和模拟系统组成。PSoC片上系统包含8个数字模块和12个模拟模块。这些模块都可进行配置,用户通过对这些模块进行配置,定义出用户所需要的功能。数字模块可配置成定时器、计数器、串行通信口(UARTS)CRC发生器、PWM脉宽调制等功能模块。模拟模块可配置成模数转换器、数模转换器、可编程增益放大器、可编程滤波器、差分比较器等功能模块。数字模块和模拟模块也可构成调制解调器、复杂的马达控制器、传感器信号的处理电路等。

 

2  电容式感应原理

电容开关是一对相邻电极,在电极之间有很小的电容。当一个导体接近两个电极时,在电极与导体之间会产生一个耦合电容。在这里,手指就是这个导体。通常电容开关的形式是一边接地的电容,导体的存在增加了开关到地之间的电容。检测是否有手指靠近,也就是检测是否有按键按下,可依据电容的变化来判断。检测电容变化的方法有很多:电流与电压相位差检测、电容构成振荡器进行频率检测、电容桥电荷转换检测。因为电容桥电荷转换检测的方法较适用于大量按键扫描和PSoC的性能,所以在此采用该方法进行检测。电荷转换电路从概念上来说与RC充放电路相似,如图1 所示。电荷转移的优点是不需要附加电阻器件。Cp是感应的电容,它的值随着电极材料上所加导体而改变。Csum是参考总电容。

 

    在检测周期开始,通过一个复位开关把Csum上的电荷全部放掉。然后通过单刀双向开关使CD工作在非重迭的周期上。在第一半周,Cp连接到VDD充电。当Cp上的电荷以由Cp值决定的速度充到VDD时,开关断开,然后把开关连接到CsumCp上的电荷转移到Csum中。


    在图
1中,因为Csum的电容值比CP大得多,所以Csum上的电压值在充电的每一周期内只有微小的增加。这个CpCsum上的电荷转换周期重复许多次,以使Csum上积累到一个大的信号值。当连接到VDD时,电容Cp上的电荷为:

Q=CV    (1)


    不是
Cp上的所有电荷都转移到Csum中。当Cp上的电压跌落到Csum上的预存电压时,转换便不再进行。为检测感应的电容值是否有改变,可通过Cp-Csum的充放电方式,把Csum充到固定的阈值VTH,再计算到达这个阈值时的周期数。在任意采样点nCsum上的电压值为:

2示出了充放电115 ms后的电荷转换波形。

 

    其充放频率为6 MHz,所以其转换次数为700次。


    式
(2)很明显是一个指数函数,即电压值Vsum为:

 

检测Cp的变化率,可通过比较VsumVTH得到。即计算Vsum充到VTH时的充放电次数n

 

当手指靠近时,Cp变成电极感应电容和手指接近产生的耦合电容之和CF+P,所以Csum充电到阈值VTH的速度更快,充放电周期数n也就更小:

  

这样,检测是否有键按下就简化成了检测周期数的变化率△n=nnF+P°当△n>nTH时,表明有手指靠近。

 

3  电容式非接触按键的设计与实现

3.1  电容式非接触按键的硬件电路设计

电容式非接触按键的硬件电路如图3所示。该设计中,通过PSoC芯片CY8C2714循环检测感应电极的状态来判断是否有按键按下。该系统的硬件设计非常简单,感应电极不需要附加任何元器件。IOPO2P06共连接4个按键感应电极,芯片通过内部硬件配置和软件算法,对感应电极上是否有手指按下进行检测。另外,PSoC芯片可外接ISSP接口实现在线编程。

 

 

3.2  电容式非接触按键的软件实现

非接触按键的检测,须通过比较器、充电电流源和复位开关组成一个张弛振荡器,来对按键电极电容充放电。PSoC内部用户模块配置如图4所示。比较器占用一个模拟模块,它的同相输入端由多路模拟开关连接到I/O口上,反相输入端接内部参考电压VBG作为电容充电阈值VTH,与同相输入端进行比较。输出端连接比较逻辑输出总线0。总线与通用输出口连通,再把通用输出口4和通用输入口4连接在一起,作为PWM的时钟输入线。PWM脉宽调制模块占用1个数字模块,其时钟输入连到比较器的输出,PWM的输出连接到定时器的捕获脚。116位定时器占用2个数字模块,对PWM输出的脉冲进行定时。

 

非接触式感应按键的实现过程为:首先设置IO口的输出驱动模式,开始扫描按键,把按键连接到模拟多通道输入口,使能振荡器。当Cp上的电压线性增加到阈值时,比较器输出高电平。刷新定时器和PWM的周期数,重设计数值,置完成标志位。当扫描完成,停止PWM,定时器中断服务完成。最后根据电容感应原理,计算出定时器的周期数来判断是否有按键按下。在本设计中,如式(5)所示,选取Csum值,使充放电周期数n=1000次时,Vsum到达VTH。当检测到nf+p<800,即Δn>nTH=200时,认为有键按下。  


 

    本设计中,基于 PSoC片上系统新片的非接触式感应按键界面,有着非接触、可靠和设计简单的特点。这种方便、灵活的操作界面已在家电和控制系统中得到饿应用和推广,所以关于电容式感应按键技术的应用将会是嵌入式系统中的一个研究热点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

柏林2025年9月9日 /美通社/ -- 2025年9月5日,纳斯达克上市公司优克联集团(NASDAQ: UCL)旗下全球互联品牌GlocalMe,正式亮相柏林国际消费电子展(IFA 2025),重磅推出融合企...

关键字: LOCAL LM BSP 移动网络

深圳2025年9月9日 /美通社/ -- PART 01活动背景 当技术的锋芒刺穿行业壁垒,万物互联的生态正重塑产业疆域。2025年,物联网产业迈入 "破界创造"与"共生进化" 的裂变时代——AI大模型消融感知边界,...

关键字: BSP 模型 微信 AIOT

"出海无界 商机无限"助力企业构建全球竞争力 深圳2025年9月9日 /美通社/ -- 2025年8月28日, 由领先商业管理媒体世界经理人携手环球资源联合主办、深圳•前海出海e站通协办的...

关键字: 解码 供应链 AI BSP

柏林2025年9月9日 /美通社/ -- 柏林当地时间9月6日,在2025德国柏林国际电子消费品展览会(International Funkausstellung...

关键字: 扫地机器人 耳机 PEN BSP

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移远通信宣布,其自研蓝牙协议栈DynaBlue率先通过蓝牙技术联盟(SIG)BQB 6.1标准认证。作为移远深耕短距离通信...

关键字: 蓝牙协议栈 移远通信 COM BSP

上海2025年9月9日 /美通社/ -- 为全面落实党中央、国务院和上海市委、市政府关于加快发展人力资源服务业的决策部署,更好发挥人力资源服务业赋能百业作用,8月29日,以"AI智领 HR智链 静候你来&quo...

关键字: 智能体 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付与一汽出行达成合作,为其自主研发的"旗驭车管"车辆运营管理平台提供全流程支付通道及技术支持。此次合作不仅提升了平台对百余家企业客户的运营管理效率...

关键字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制药(PharmaEngine, Inc.)发现的新一代PRMT5抑制剂PEP0...

关键字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶
关闭